Search results
Results from the WOW.Com Content Network
Along with axial stress and radial stress, circumferential stress is a component of the stress tensor in cylindrical coordinates. It is usually useful to decompose any force applied to an object with rotational symmetry into components parallel to the cylindrical coordinates r , z , and θ .
An axial load is transmitted directly through the bearing, while a radial load is poorly supported and tends to separate the races, so that a larger radial load is likely to damage the bearing. Deep-groove In a deep-groove radial bearing, the race dimensions are close to the dimensions of the balls that run in it. Deep-groove bearings support ...
Allowable play varies greatly depending on the use. As an example, a wheelbarrow wheel supports radial and axial loads. Axial loads may be hundreds of newtons force left or right, and it is typically acceptable for the wheel to wobble by as much as 10 mm under the varying load. In contrast, a lathe may position a cutting tool to ±0.002 mm ...
These are the type most commonly used in automotive applications (to support the wheels of a motor car for example), where they are used in pairs to accommodate axial thrust in either direction, as well as radial loads. They can support greater thrust loads than the ball type due to the larger contact area, but are more expensive to manufacture.
The shape allows for more surface area to be in contact adding in moving more weight with less force at a greater distance. Tapered - Primarily focused on the ability to take on axial loading and radial loading and how it does this is by using a conical structure enabling the elements to roll diagonally.
The construction is intended for combination loads, such as dual acting axial and radial loads. The bearing axis is where the projected lines of the raceway combine at a common location to improve rolling, while reducing friction. The load capacity can be increased or decreased depending on the contact angle being increased or decreased.
The walls of pressure vessels generally undergo triaxial loading. For cylindrical pressure vessels, the normal loads on a wall element are longitudinal stress, circumferential (hoop) stress and radial stress. The radial stress for a thick-walled cylinder is equal and opposite to the gauge pressure on the inside surface, and zero on the outside ...
If the load is compression on the bar, rather than stretching it, the analysis is the same except that the force F and the stress change sign, and the stress is called compressive stress. The ratio σ = F / A {\displaystyle \sigma =F/A} may be only an average stress.