Search results
Results from the WOW.Com Content Network
Later he gives a corresponding equation for current as a function of voltage under additional assumptions, which is the equation we call the Shockley ideal diode equation. [3] He calls it "a theoretical rectification formula giving the maximum rectification", with a footnote referencing a paper by Carl Wagner , Physikalische Zeitschrift 32 , pp ...
The Shockley diode equation relates the diode current of a p-n junction diode to the diode voltage .This relationship is the diode I-V characteristic: = (), where is the saturation current or scale current of the diode (the magnitude of the current that flows for negative in excess of a few , typically 10 −12 A).
From the Shockley ideal diode equation given above, it might appear that the voltage has a positive temperature coefficient (at a constant current), but usually the variation of the reverse saturation current term is more significant than the variation in the thermal voltage term.
The circuit is treated as a completely linear network of ideal diodes. Every time a diode switches from on to off or vice versa, the configuration of the linear network changes. Adding more detail to the approximation of equations increases the accuracy of the simulation, but also increases its running time.
A current–voltage characteristic or I–V curve (current–voltage curve) is a relationship, typically represented as a chart or graph, between the electric current through a circuit, device, or material, and the corresponding voltage, or potential difference, across it.
This is the case for all linear elements, but also, for example, an ideal diode, which in circuit theory terms is a non-linear resistor, has a constitutive relation of the form = (). Both independent voltage and independent current sources can be considered non-linear resistors under this definition. [3]
The electrons and holes travel in opposite directions, but they also have opposite charges, so the overall current is in the same direction on both sides of the diode, as required. The Shockley diode equation models the forward-bias operational characteristics of a p–n junction outside the avalanche (reverse-biased conducting) region.
The transfer function of an ideal diode has been given at the top of this (non-linear) section. However, this formula is rarely used in network analysis, a piecewise approximation being used instead. It can be seen that the diode current rapidly diminishes to -I o as the voltage falls. This current, for most purposes, is so small it can be ignored.