Search results
Results from the WOW.Com Content Network
An advantage of variance as a measure of dispersion is that it is more amenable to algebraic manipulation than other measures of dispersion such as the expected absolute deviation; for example, the variance of a sum of uncorrelated random variables is equal to the sum of their variances. A disadvantage of the variance for practical applications ...
This means that the sum of two independent normally distributed random variables is normal, with its mean being the sum of the two means, and its variance being the sum of the two variances (i.e., the square of the standard deviation is the sum of the squares of the standard deviations). [1]
the product of two random variables is a random variable; addition and multiplication of random variables are both commutative; and; there is a notion of conjugation of random variables, satisfying (XY) * = Y * X * and X ** = X for all random variables X,Y and coinciding with complex conjugation if X is a constant. This means that random ...
When two or more random variables are defined on a probability space, it is useful to describe how they vary together; that is, it is useful to measure the relationship between the variables. A common measure of the relationship between two random variables is the covariance.
The sign of the covariance of two random variables X and Y. In probability theory and statistics, covariance is a measure of the joint variability of two random variables. [1] The sign of the covariance, therefore, shows the tendency in the linear relationship between the variables.
Recall that variance is the expected squared deviation between a random variable (say, Y) and its expected value. The expected value can be thought of as a reasonable prediction of the outcomes of the random experiment (in particular, the expected value is the best constant prediction when predictions are assessed by expected squared prediction ...
In particular, when two or more random variables are statistically independent, the n th-order cumulant of their sum is equal to the sum of their n th-order cumulants. As well, the third and higher-order cumulants of a normal distribution are zero, and it is the only distribution with this property.
For an illustration, consider the example of a dog show (a selected excerpt of Analysis_of_variance#Example). Let the random variable correspond to the dog weight and correspond to the breed. In this situation, it is reasonable to expect that the breed explains a major portion of the variance in weight since there is a big variance in the ...