Search results
Results from the WOW.Com Content Network
When two or more random variables are defined on a probability space, it is useful to describe how they vary together; that is, it is useful to measure the relationship between the variables. A common measure of the relationship between two random variables is the covariance.
A chart showing a uniform distribution. In probability theory and statistics, a collection of random variables is independent and identically distributed (i.i.d., iid, or IID) if each random variable has the same probability distribution as the others and all are mutually independent. [1]
The simulation needs to generate random variables of various kinds, depending on the system model. This is accomplished by one or more Pseudorandom number generators. The use of pseudo-random numbers as opposed to true random numbers is a benefit should a simulation need a rerun with exactly the same behavior.
Monte Carlo simulation: Drawing a large number of pseudo-random uniform variables from the interval [0,1] at one time, or once at many different times, and assigning values less than or equal to 0.50 as heads and greater than 0.50 as tails, is a Monte Carlo simulation of the behavior of repeatedly tossing a coin.
when the two marginal functions and the copula density function are known, then the joint probability density function between the two random variables can be calculated, or; when the two marginal functions and the joint probability density function between the two random variables are known, then the copula density function can be calculated.
A stochastic simulation is a simulation of a system that has variables that can change stochastically (randomly) with individual probabilities. [1] Realizations of these random variables are generated and inserted into a model of the system. Outputs of the model are recorded, and then the process is repeated with a new set of random values.
Inverse transform sampling (also known as inversion sampling, the inverse probability integral transform, the inverse transformation method, or the Smirnov transform) is a basic method for pseudo-random number sampling, i.e., for generating sample numbers at random from any probability distribution given its cumulative distribution function.
A more general case of this concerns the distribution of the product of a random variable having a beta distribution with a random variable having a gamma distribution: for some cases where the parameters of the two component distributions are related in a certain way, the result is again a gamma distribution but with a changed shape parameter ...