enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Few-shot learning - Wikipedia

    en.wikipedia.org/wiki/Few-shot_learning

    Few-shot learning and one-shot learning may refer to: Few-shot learning, a form of prompt engineering in generative AI; One-shot learning (computer vision)

  3. Prompt engineering - Wikipedia

    en.wikipedia.org/wiki/Prompt_engineering

    B/A/D/E/C C/E E/D D Output: So we get the result as C, E, D. Few-shot learning A prompt may include a few examples for a model to learn from, such as asking the model to complete " maison → house, chat → cat, chien →" (the expected response being dog ), [ 31 ] an approach called few-shot learning .

  4. One-shot learning (computer vision) - Wikipedia

    en.wikipedia.org/wiki/One-shot_learning...

    One-shot learning is an object categorization problem, found mostly in computer vision. Whereas most machine learning -based object categorization algorithms require training on hundreds or thousands of examples, one-shot learning aims to classify objects from one, or only a few, examples.

  5. Zero-shot learning - Wikipedia

    en.wikipedia.org/wiki/Zero-shot_learning

    The name is a play on words based on the earlier concept of one-shot learning, in which classification can be learned from only one, or a few, examples. Zero-shot methods generally work by associating observed and non-observed classes through some form of auxiliary information, which encodes observable distinguishing properties of objects. [1]

  6. Contrastive Language-Image Pre-training - Wikipedia

    en.wikipedia.org/wiki/Contrastive_Language-Image...

    CLIP can perform zero-shot image classification tasks. This is achieved by prompting the text encoder with class names and selecting the class whose embedding is closest to the image embedding. For example, to classify an image, they compared the embedding of the image with the embedding of the text "A photo of a {class}.", and the {class} that ...

  7. Discover the latest breaking news in the U.S. and around the world — politics, weather, entertainment, lifestyle, finance, sports and much more.

  8. Caltech 101 - Wikipedia

    en.wikipedia.org/wiki/Caltech_101

    The first paper to use Caltech 101 was an incremental Bayesian approach to one-shot learning, [4] an attempt to classify an object using only a few examples, by building on prior knowledge of other classes. The Caltech 101 images, along with the annotations, were used for another one-shot learning paper at Caltech. [5]

  9. LightGBM - Wikipedia

    en.wikipedia.org/wiki/LightGBM

    LightGBM, short for Light Gradient-Boosting Machine, is a free and open-source distributed gradient-boosting framework for machine learning, originally developed by Microsoft. [4] [5] It is based on decision tree algorithms and used for ranking, classification and other machine learning tasks. The development focus is on performance and ...