Search results
Results from the WOW.Com Content Network
A tangential quadrilateral is usually defined as a convex quadrilateral for which all four sides are tangent to the same inscribed circle. Pitot's theorem states that, for these quadrilaterals, the two sums of lengths of opposite sides are the same. Both sums of lengths equal the semiperimeter of the quadrilateral. [2]
By the power-of-a-point theorem, the product of lengths PM · PN for any ray PMN equals to the square of PT, the length of the tangent line segment (red). No tangent line can be drawn through a point within a circle, since any such line must be a secant line. However, two tangent lines can be drawn to a circle from a point P outside of the circle.
If the incircle is tangent to the sides AB, BC, CD, DA at T 1, T 2, T 3, T 4 respectively, and if N 1, N 2, N 3, N 4 are the isotomic conjugates of these points with respect to the corresponding sides (that is, AT 1 = BN 1 and so on), then the Nagel point of the tangential quadrilateral is defined as the intersection of the lines N 1 N 3 and N ...
In trigonometry, the law of tangents or tangent rule [1] is a statement about the relationship between the tangents of two angles of a triangle and the lengths of the opposing sides. In Figure 1, a, b, and c are the lengths of the three sides of the triangle, and α, β, and γ are the angles opposite those three respective sides.
Two tangents can always be drawn to a circle from any point outside the circle, and these tangents are equal in length. If a tangent at A and a tangent at B intersect at the exterior point P, then denoting the centre as O, the angles ∠BOA and ∠BPA are supplementary. If AD is tangent to the circle at A and if AQ is a chord of the circle ...
Secant-, chord-theorem. For the intersecting secants theorem and chord theorem the power of a point plays the role of an invariant: . Intersecting secants theorem: For a point outside a circle and the intersection points , of a secant line with the following statement is true: | | | | = (), hence the product is independent of line .
Next to the tangent-secant theorem and the intersecting secants theorem the intersecting chords theorem represents one of the three basic cases of a more general theorem about two intersecting lines and a circle - the power of point theorem.
These are an infinite family of circles tangent to the -axis of the Cartesian coordinate system at its rational points. Each fraction / (in lowest terms) has a circle tangent to the line at the point (/,) with curvature . Three of these curvatures, together with the zero curvature of the axis, meet the conditions of Descartes' theorem whenever ...