Search results
Results from the WOW.Com Content Network
The concepts invoked in Newton's laws of motion — mass, velocity, momentum, force — have predecessors in earlier work, and the content of Newtonian physics was further developed after Newton's time. Newton combined knowledge of celestial motions with the study of events on Earth and showed that one theory of mechanics could encompass both.
The SI unit of force is the newton (symbol N), which is the force required to accelerate a one kilogram mass at a rate of one meter per second squared, or kg·m·s −2.The corresponding CGS unit is the dyne, the force required to accelerate a one gram mass by one centimeter per second squared, or g·cm·s −2. A newton is thus equal to ...
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
Mass is (among other properties) an inertial property; that is, the tendency of an object to remain at constant velocity unless acted upon by an outside force. Under Sir Isaac Newton's 337-year-old laws of motion and an important formula that sprang from his work, F = ma, an object with a mass, m, of one kilogram accelerates, a, at one meter ...
A newton is defined as 1 kg⋅m/s 2 (it is a named derived unit defined in terms of the SI base units). [1]: 137 One newton is, therefore, the force needed to accelerate one kilogram of mass at the rate of one metre per second squared in the direction of the applied force.
A force originates from within a field, such as an electro-static field (caused by static electrical charges), electro-magnetic field (caused by moving charges), or gravitational field (caused by mass), among others. Newton was the first to mathematically express the relationship between force and momentum.
In 1687 Newton published his Principia which combined his laws of motion with new mathematical analysis to explain Kepler's empirical results. [7]: 134 His explanation was in the form of a law of universal gravitation: any two bodies are attracted by a force proportional to their mass and inversely proportional to their separation squared.
Traditionally the Newton–Euler equations is the grouping together of Euler's two laws of motion for a rigid body into a single equation with 6 components, using column vectors and matrices. These laws relate the motion of the center of gravity of a rigid body with the sum of forces and torques (or synonymously moments ) acting on the rigid body.