enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Angular mechanics - Wikipedia

    en.wikipedia.org/wiki/Angular_mechanics

    A diagram of angular momentum. Showing angular velocity (Scalar) and radius. In physics, angular mechanics is a field of mechanics which studies rotational movement. It studies things such as angular momentum, angular velocity, and torque. It also studies more advanced things such as Coriolis force [1] and Angular aerodynamics.

  3. Balance of angular momentum - Wikipedia

    en.wikipedia.org/wiki/Balance_of_angular_momentum

    In 1744, Euler was the first to use the principles of momentum and of angular momentum to state the equations of motion of a system. In 1750, in his treatise "Discovery of a new principle of mechanics" [ 3 ] he published the Euler's equations of rigid body dynamics , which today are derived from the balance of angular momentum, which Euler ...

  4. Angular momentum - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum

    The angular momentum of m is proportional to the perpendicular component v ⊥ of the velocity, or equivalently, to the perpendicular distance r ⊥ from the origin. Angular momentum is a vector quantity (more precisely, a pseudovector) that represents the product of a body's rotational inertia and rotational velocity (in radians/sec) about a ...

  5. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Left: intrinsic "spin" angular momentum S is really orbital angular momentum of the object at every point, right: extrinsic orbital angular momentum L about an axis, top: the moment of inertia tensor I and angular velocity ω (L is not always parallel to ω) [6] bottom: momentum p and its radial position r from the axis.

  6. König's theorem (kinetics) - Wikipedia

    en.wikipedia.org/wiki/König's_theorem_(kinetics)

    where is the mass of the rigid body; ¯ is the velocity of the center of mass of the rigid body, as viewed by an observer fixed in an inertial frame N; ¯ is the angular momentum of the rigid body about the center of mass, also taken in the inertial frame N; and is the angular velocity of the rigid body R relative to the inertial frame N. [3]

  7. Rigid body dynamics - Wikipedia

    en.wikipedia.org/wiki/Rigid_body_dynamics

    The fundamental equation describing the behavior of a rotating solid body is Euler's equation of motion: = = + = + = + where the pseudovectors τ and L are, respectively, the torques on the body and its angular momentum, the scalar I is its moment of inertia, the vector ω is its angular velocity, the vector α is its angular acceleration, D is ...

  8. Constant of motion - Wikipedia

    en.wikipedia.org/wiki/Constant_of_motion

    Examples of integrals of motion are the angular momentum vector, =, or a Hamiltonian without time dependence, such as (,) = + (). An example of a function that is a constant of motion but not an integral of motion would be the function C ( x , v , t ) = x − v t {\displaystyle C(x,v,t)=x-vt} for an object moving at a constant speed in one ...

  9. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    When Newton's laws are applied to rotating extended bodies, they lead to new quantities that are analogous to those invoked in the original laws. The analogue of mass is the moment of inertia, the counterpart of momentum is angular momentum, and the counterpart of force is torque. Angular momentum is calculated with respect to a reference point ...