Search results
Results from the WOW.Com Content Network
Then is called a pivotal quantity (or simply a pivot). Pivotal quantities are commonly used for normalization to allow data from different data sets to be compared. It is relatively easy to construct pivots for location and scale parameters: for the former we form differences so that location cancels, for the latter ratios so that scale cancels.
The pivotal method is based on a random variable that is a function of both the observations and the parameters but whose distribution does not depend on the parameter. Such random variables are called pivotal quantities. By using these, probability statements about the observations and parameters may be made in which the probabilities do not ...
Such a pivotal quantity, depending only on observables, is called an ancillary statistic. [2] The usual method of constructing pivotal quantities is to take the difference of two variables that depend on location, so that location cancels out, and then take the ratio of two variables that depend on scale, so that scale cancels out.
In any situation where this statistic is a linear function of the data, divided by the usual estimate of the standard deviation, the resulting quantity can be rescaled and centered to follow Student's t distribution. Statistical analyses involving means, weighted means, and regression coefficients all lead to statistics having this form.
In theoretical statistics, parametric normalization can often lead to pivotal quantities – functions whose sampling distribution does not depend on the parameters – and to ancillary statistics – pivotal quantities that can be computed from observations, without knowing parameters.
Today we will run through one way of estimating the intrinsic value of Pivotal Systems Corporation ( ASX:PVS ) by...
A ancillary statistic is a specific case of a pivotal quantity that is computed only from the data and not from the parameters. They can be used to construct prediction intervals. They are also used in connection with Basu's theorem to prove independence between statistics. [4]
Calculate the costs of moving. Moving is not only a stressful experience but also an expensive one. Selling a home requires you to navigate a fluctuating real estate market — and if you happen ...