Search results
Results from the WOW.Com Content Network
A flitch beam (or flitched beam) is a compound beam used in the construction of houses, decks, and other primarily wood-frame structures. Typically, the flitch beam is made up of a vertical steel plate sandwiched between two wood beams, the three layers being held together with bolts .
A flitch beam is a simple form of composite construction sometimes used in North American light frame construction. [3] This occurs when a steel plate is sandwiched between two wood joists and bolted together. A flitch beam can typically support heavier loads over a longer span than an all-wood beam of the same cross section.
Light frame material dimensions range from 38 by 89 mm (1.5 by 3.5 in); i.e., a Dimensional number two-by-four to 5 cm by 30 cm (two-by-twelve inches) at the cross-section, and lengths ranging from 2.5 metres (8.2 ft) for walls to 7 metres (23 ft) or more for joists and rafters.
Invented in 1969, the I-joist is an engineered wood product that has great strength in relation to its size and weight. The biggest notable difference from dimensional lumber is that the I-joist carries heavy loads with less lumber than a dimensional solid wood joist. [1] As of 2005, approximately 50% of all wood light framed floors used I-joists.
Finger-jointed lumber – solid dimensional lumber lengths typically are limited to lengths of 22 to 24 feet (6.7–7.3 m), but can be made longer by the technique of "finger-jointing" by using small solid pieces, usually 18 to 24 inches (460–610 mm) long, and joining them together using finger joints and glue to produce lengths that can be ...
The jetty beams or joists conform t floor dimensions above, but are at right angles to the jetty-plates that conform to the shorter dimensions of "roof" of the floor below. Jetty beams are mortised at 45° into the sides of the dragon beams. They are the main constituents of the cantilever system, and determine how far the jetty projects.
After solving the differential equation for the normal forces in the cover sheets for a single span beam under a given load, the energy method can be used to expand the approach for the calculation of multi-span beams. Sandwich continuous beam with flexible cover sheets can also be laid on top of each other when using this technique.
The beams are continuously formed, so the length of the beam is limited only to the maximum length that can be handled and transported. Typical widths are 3 + 1 ⁄ 2 , 5 + 1 ⁄ 4 or 7 inches (89, 133 or 178 mm); typical depths are 9 + 1 ⁄ 2 , 11 + 7 ⁄ 8 , 14, 16 and 18 inches (240, 300, 360, 410 and 460 mm).