Search results
Results from the WOW.Com Content Network
The accessory olfactory bulb resides on the dorsal-posterior region of the main olfactory bulb and forms a parallel pathway. Destruction of the olfactory bulb results in ipsilateral anosmia, while irritative lesions of the uncus can result in olfactory and gustatory hallucinations. Flow of olfactory information from receptors to glomeruli layer
These ORNs then project their axons to the olfactory bulb. In the olfactory bulb, the ORNs synapse with termination in the glomeruli. [6] Each glomerulus receives input from olfactory receptor neurons expressing only one type of olfactory receptor. The glomerular activation patterns within the olfactory bulb are thought to represent the quality ...
The olfactory system, or sense of smell, is the sensory system used for olfaction (i.e., smelling). Olfaction is one of the special senses directly associated with specific organs. Most mammals and reptiles have a main olfactory system and an accessory olfactory system. The main olfactory system detects airborne substances, while the accessory ...
As in the main olfactory system, the axons of these sensory neurons project from the vomeronasal organ to the accessory olfactory bulb, which in the mouse is located on the dorsal-posterior portion of the main olfactory bulb. Unlike in the main olfactory system, the axons that leave the accessory olfactory bulb do not project to the brain's ...
Olfactory: Purely sensory Telencephalon: Located in the olfactory foramina in the cribriform plate of the ethmoid bone. Transmits the sense of smell from the nasal cavity. [3] II Optic: Sensory Retinal ganglion cells: Located in the optic canal. Transmits visual signals from the retina of the eye to the brain. [3] III Oculomotor: Mainly motor
The olfactory system is the pathway between the nose and the brain. The system detects smell by processing the tiny odor molecules that waft off of various objects, such as baking bread or a ...
The olfactory epithelium contains olfactory sensory neurons, whose axons innervate the olfactory bulb. In order for olfactory sensory neurons to function properly, they must express odorant receptors and the proper transduction proteins on non-motile cilia that extend from the dendritic knob in addition to projecting their axons to the ...
One prominent hypothesis is that mitral cells encode the strength of an olfactory input into their firing phases relative to the sniff cycle. A second hypothesis is that the olfactory bulb network acts as a dynamical system that decorrelates to differentiate between representations of highly similar odorants over time. Support for the second ...