Search results
Results from the WOW.Com Content Network
In Euclidean geometry, the intersecting chords theorem, or just the chord theorem, is a statement that describes a relation of the four line segments created by two intersecting chords within a circle. It states that the products of the lengths of the line segments on each chord are equal. It is Proposition 35 of Book 3 of Euclid's Elements.
Secant-, chord-theorem. For the intersecting secants theorem and chord theorem the power of a point plays the role of an invariant: . Intersecting secants theorem: For a point outside a circle and the intersection points , of a secant line with the following statement is true: | | | | = (), hence the product is independent of line .
The Gershgorin circle theorem applies the companion matrix of the polynomial on a basis related to Lagrange interpolation to define discs centered at the interpolation points, each containing a root of the polynomial; see Durand–Kerner method § Root inclusion via Gerschgorin's circles for details.
Pages in category "Theorems about circles" The following 21 pages are in this category, out of 21 total. This list may not reflect recent changes. B. Butterfly ...
The second theorem considers five circles in general position passing through a single point M. Each subset of four circles defines a new point P according to the first theorem. Then these five points all lie on a single circle C. The third theorem considers six circles in general position that pass through a single point M. Each subset of five ...
Conway's circle theorem as a special case of the generalisation, called "side divider theorem" (Villiers) or "windscreen wiper theorem" (Polster)) Conway's circle is a special case of a more general circle for a triangle that can be obtained as follows: Given any ABC with an arbitrary point P on line AB.
For every 3 non-theme words you find, you earn a hint. Hints show the letters of a theme word. If there is already an active hint on the board, a hint will show that word’s letter order.
Use the Gershgorin circle theorem to estimate the eigenvalues of: This diagram shows the discs in yellow derived for the eigenvalues. The first two disks overlap and their union contains two eigenvalues. The third and fourth disks are disjoint from the others and contain one eigenvalue each.