enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Maximum likelihood estimation - Wikipedia

    en.wikipedia.org/wiki/Maximum_likelihood_estimation

    In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data. This is achieved by maximizing a likelihood function so that, under the assumed statistical model , the observed data is most probable.

  3. Maximum entropy probability distribution - Wikipedia

    en.wikipedia.org/wiki/Maximum_entropy...

    The density of the maximum entropy distribution for this class is constant on each of the intervals [a j-1,a j). The uniform distribution on the finite set {x 1,...,x n} (which assigns a probability of 1/n to each of these values) is the maximum entropy distribution among all discrete distributions supported on this set.

  4. Principle of maximum entropy - Wikipedia

    en.wikipedia.org/wiki/Principle_of_maximum_entropy

    The principle of maximum entropy states that the probability distribution which best represents the current state of knowledge about a system is the one with largest entropy, in the context of precisely stated prior data (such as a proposition that expresses testable information).

  5. Maximum-entropy random graph model - Wikipedia

    en.wikipedia.org/wiki/Maximum-entropy_random...

    Any random graph model (at a fixed set of parameter values) results in a probability distribution on graphs, and those that are maximum entropy within the considered class of distributions have the special property of being maximally unbiased null models for network inference [2] (e.g. biological network inference).

  6. Expectation–maximization algorithm - Wikipedia

    en.wikipedia.org/wiki/Expectation–maximization...

    Thus, the α-EM algorithm by Yasuo Matsuyama is an exact generalization of the log-EM algorithm. No computation of gradient or Hessian matrix is needed. The α-EM shows faster convergence than the log-EM algorithm by choosing an appropriate α. The α-EM algorithm leads to a faster version of the Hidden Markov model estimation algorithm α-HMM ...

  7. Maximum likelihood sequence estimation - Wikipedia

    en.wikipedia.org/wiki/Maximum_likelihood...

    where p(r | x) denotes the conditional joint probability density function of the observed series {r(t)} given that the underlying series has the values {x(t)}. In contrast, the related method of maximum a posteriori estimation is formally the application of the maximum a posteriori (MAP) estimation approach.

  8. Maximum a posteriori estimation - Wikipedia

    en.wikipedia.org/wiki/Maximum_a_posteriori...

    An estimation procedure that is often claimed to be part of Bayesian statistics is the maximum a posteriori (MAP) estimate of an unknown quantity, that equals the mode of the posterior density with respect to some reference measure, typically the Lebesgue measure.

  9. M-estimator - Wikipedia

    en.wikipedia.org/wiki/M-estimator

    For example, a maximum-likelihood estimate is the point where the derivative of the likelihood function with respect to the parameter is zero; thus, a maximum-likelihood estimator is a critical point of the score function. [8]