Search results
Results from the WOW.Com Content Network
2,4,6-Tribromoaniline is a brominated derivative of aniline with the formula C 6 H 4 Br 3 N. It is used in organic synthesis of pharmaceuticals, agrochemicals and fire-extinguishing agents. It is used in organic synthesis of pharmaceuticals, agrochemicals and fire-extinguishing agents.
Brominating aniline with elemental bromine gives 2,4,6-tribromoaniline. This is then diazotized, then reacted with ethanol to replace the diazonium group with hydrogen, forming 1,3,5-tribromobenzene. [3] It has also been prepared by these methods: [3] replacement of the amino group of 3,5-dibromoaniline with bromine
The bromoanilines form a group of three isomers where the bromine atom occupies the para, ortho or meta position on the aromatic ring. Bromoaniline isomers Arene substitution patterns. The three isomers are: 2-Bromoaniline (o-Bromoaniline) [1] 3-Bromoaniline (m-Bromoaniline) [2] 4-Bromoaniline (p-Bromoaniline) [3]
Tribromobenzenes are a group of bromobenzenes with the formula C 6 H 3 Br 3, consisting of three bromine atoms bonded to a central benzene ring. There are three isomers of tribromobenzene: Tribromobenzene isomers
4-Bromoaniline is a compound where an aniline molecule is substituted with a bromine atom on the para position. Commercially available, this compound may be used as a building block, e.g. in the preparation of monobrominated biphenyl via the Gomberg-Bachmann reaction. [2]
Microbial metabolism in products treated with TBP is known to produce 2,4,6-tribromoanisole (TBA), [9] which has a musty odor. In 2010 and 2011, Pfizer and Johnson & Johnson voluntarily recalled some products due to TBA odors from wooden pallets which were treated with TBP.
Both polymorphs are monoclinic, but α-BiBr 3 is in space group P2 1 /a whereas β-BiBr 3 is in C2/m. α-BiBr 3 consists of pyramidal molecules whereas β-BiBr 3 is polymeric and adopts the AlCl 3 structure. BiBr 3 is the only group 15 trihalide that can adopt both molecular and polymeric structures. [3]
Silver bromide (AgBr). Nearly all elements in the periodic table form binary bromides. The exceptions are decidedly in the minority and stem in each case from one of three causes: extreme inertness and reluctance to participate in chemical reactions (the noble gases, with the exception of xenon in the very unstable XeBr 2; extreme nuclear instability hampering chemical investigation before ...