Search results
Results from the WOW.Com Content Network
Binary search Visualization of the binary search algorithm where 7 is the target value Class Search algorithm Data structure Array Worst-case performance O (log n) Best-case performance O (1) Average performance O (log n) Worst-case space complexity O (1) Optimal Yes In computer science, binary search, also known as half-interval search, logarithmic search, or binary chop, is a search ...
In computer science, a dichotomic search is a search algorithm that operates by selecting between two distinct alternatives (dichotomies [1] or polychotomies [2] when they are more than two) at each step. It is a specific type of divide and conquer algorithm. A well-known example is binary search. [3]
Uniform binary search is an optimization of the classic binary search algorithm invented by Donald Knuth and given in Knuth's The Art of Computer Programming.It uses a lookup table to update a single array index, rather than taking the midpoint of an upper and a lower bound on each iteration; therefore, it is optimized for architectures (such as Knuth's MIX) on which
A basic example of short-circuiting is given in depth-first search (DFS) of a binary tree; see binary trees section for standard recursive discussion. The standard recursive algorithm for a DFS is: base case: If current node is Null, return false
Binary search functions, for example, have a maximum complexity of O(log n), or logarithmic time. In simple terms, the maximum number of operations needed to find the search target is a logarithmic function of the size of the search space.
Fig. 1: A binary search tree of size 9 and depth 3, with 8 at the root. In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and less than the ones in its right subtree.
In computer science, an optimal binary search tree (Optimal BST), sometimes called a weight-balanced binary tree, [1] is a binary search tree which provides the smallest possible search time (or expected search time) for a given sequence of accesses (or access probabilities). Optimal BSTs are generally divided into two types: static and dynamic.
The auxiliary indices have turned the search problem from a binary search requiring roughly log 2 N disk reads to one requiring only log b N disk reads where b is the blocking factor (the number of entries per block: b = 100 entries per block in our example; log 100 1,000,000 = 3 reads).