Search results
Results from the WOW.Com Content Network
Charles Henry Brase, Corrinne Pellillo Brase: Understanding Basic Statistics. Cengage Learning, 2012, ISBN 9781133713890 , pp. 205–208 ( online copy at Google ) External links
In statistics, the Behrens–Fisher problem, named after Walter-Ulrich Behrens and Ronald Fisher, is the problem of interval estimation and hypothesis testing concerning the difference between the means of two normally distributed populations when the variances of the two populations are not assumed to be equal, based on two independent samples.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
Probability theory or probability calculus is the branch of mathematics concerned with probability.Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms.
Mathematical statistics is the application of probability theory and other mathematical concepts to statistics, as opposed to techniques for collecting statistical data. [1] Specific mathematical techniques that are commonly used in statistics include mathematical analysis , linear algebra , stochastic analysis , differential equations , and ...
Statistics educators have cognitive and noncognitive goals for students. For example, former American Statistical Association (ASA) President Katherine Wallman defined statistical literacy as including the cognitive abilities of understanding and critically evaluating statistical results as well as appreciating the contributions statistical thinking can make.
In his book Statistics as Principled Argument, Robert P. Abelson presents the perspective that statistics serve as a standardized method for resolving disagreements among scientists, who could otherwise engage in endless debates about the merits of their respective positions. From this standpoint, statistics can be seen as a form of rhetoric.
In Bayesian statistics, the model is extended by adding a probability distribution over the parameter space . A statistical model can sometimes distinguish two sets of probability distributions. The first set Q = { F θ : θ ∈ Θ } {\displaystyle {\mathcal {Q}}=\{F_{\theta }:\theta \in \Theta \}} is the set of models considered for inference.