Search results
Results from the WOW.Com Content Network
[2] [3] Its first version, ImageJ 1.x, is developed in the public domain, while ImageJ2 and the related projects SciJava, ImgLib2, and SCIFIO are licensed with a permissive BSD-2 license. [4] ImageJ was designed with an open architecture that provides extensibility via Java plugins and recordable macros. [ 5 ]
If we use Harris corner detector in a color image, the first step is to convert it into a grayscale image, which will enhance the processing speed. The value of the gray scale pixel can be computed as a weighted sums of the values R, B and G of the color image, {,,}, where, e.g.,
Here is an example of color channel splitting of a full RGB color image. The column at left shows the isolated color channels in natural colors, while at right there are their grayscale equivalences: Composition of RGB from three grayscale images. The reverse is also possible: to build a full-color image from their separate grayscale channels.
YCbCr is sometimes abbreviated to YCC.Typically the terms Y′CbCr, YCbCr, YPbPr and YUV are used interchangeably, leading to some confusion. The main difference is that YPbPr is used with analog images and YCbCr with digital images, leading to different scaling values for U max and V max (in YCbCr both are ) when converting to/from YUV.
The first alpha version of OpenCV was released to the public at the IEEE Conference on Computer Vision and Pattern Recognition in 2000, and five betas were released between 2001 and 2005. The first 1.0 version was released in 2006. A version 1.1 "pre-release" was released in October 2008. The second major release of the OpenCV was in October 2009.
OpenCV is a huge image and video processing library designed to work with many languages such as python, C/C++, Java, and more. It is the foundation for many of the applications you know that deal ...
For example, if applied to 8-bit image displayed with 8-bit gray-scale palette it will further reduce color depth (number of unique shades of gray) of the image. Histogram equalization will work the best when applied to images with much higher color depth than palette size, like continuous data or 16-bit gray-scale images.
Color normalization is a topic in computer vision concerned with artificial color vision and object recognition. In general, the distribution of color values in an image depends on the illumination, which may vary depending on lighting conditions, cameras, and other factors.