Search results
Results from the WOW.Com Content Network
In probability theory, the chain rule [1] (also called the general product rule [2] [3]) describes how to calculate the probability of the intersection of, not necessarily independent, events or the joint distribution of random variables respectively, using conditional probabilities.
1801 (first appearance in print; used previously in personal writings of Gauss) Carl Friedrich Gauss [x] integral part (a.k.a. floor) ... intersection union: 1888
In probability theory, Boole's inequality, also known as the union bound, says that for any finite or countable set of events, the probability that at least one of the events happens is no greater than the sum of the probabilities of the individual events. This inequality provides an upper bound on the probability of occurrence of at least one ...
The term law of total probability is sometimes taken to mean the law of alternatives, which is a special case of the law of total probability applying to discrete random variables. [ citation needed ] One author uses the terminology of the "Rule of Average Conditional Probabilities", [ 4 ] while another refers to it as the "continuous law of ...
In many cases where the principle could give an exact formula (in particular, counting prime numbers using the sieve of Eratosthenes), the formula arising does not offer useful content because the number of terms in it is excessive. If each term individually can be estimated accurately, the accumulation of errors may imply that the inclusion ...
In set theory, the union (denoted by ∪) of a collection of sets is the set of all elements in the collection. [1] It is one of the fundamental operations through which sets can be combined and related to each other. A nullary union refers to a union of zero ( ) sets and it is by definition equal to the empty set.
On the premiere episode of her new podcast, Khloé Kardashian recalled her "crazy, drunk" wrestling match with Scott Disick during Kim Kardashian and Kanye West's 2014 rehearsal dinner
The intersection or union of two such matrices is obtained by applying the operation to entries of each pair of elements to obtain the corresponding matrix intersection or union. A matrix is contained in another if each entry of the first is contained in the corresponding entry of the second.