enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Proof that π is irrational - Wikipedia

    en.wikipedia.org/wiki/Proof_that_π_is_irrational

    In the 1760s, Johann Heinrich Lambert was the first to prove that the number π is irrational, meaning it cannot be expressed as a fraction /, where and are both integers. In the 19th century, Charles Hermite found a proof that requires no prerequisite knowledge beyond basic calculus .

  3. Proof that e is irrational - Wikipedia

    en.wikipedia.org/wiki/Proof_that_e_is_irrational

    In 1840, Liouville published a proof of the fact that e 2 is irrational [10] followed by a proof that e 2 is not a root of a second-degree polynomial with rational coefficients. [11] This last fact implies that e 4 is irrational. His proofs are similar to Fourier's proof of the irrationality of e.

  4. Irrational number - Wikipedia

    en.wikipedia.org/wiki/Irrational_number

    However, there is a second definition of an irrational number used in constructive mathematics, that a real number is an irrational number if it is apart from every rational number, or equivalently, if the distance | | between and every rational number is positive. This definition is stronger than the traditional definition of an irrational number.

  5. Transcendental number - Wikipedia

    en.wikipedia.org/wiki/Transcendental_number

    Hence, the set of real numbers consists of non-overlapping sets of rational, algebraic irrational, and transcendental real numbers. [3] For example, the square root of 2 is an irrational number, but it is not a transcendental number as it is a root of the polynomial equation x 2 − 2 = 0 .

  6. List of types of numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_types_of_numbers

    Rational numbers (): Numbers that can be expressed as a ratio of an integer to a non-zero integer. [3] All integers are rational, but there are rational numbers that are not integers, such as −2/9. Real numbers (): Numbers that correspond to points along a line. They can be positive, negative, or zero.

  7. Irrationality measure - Wikipedia

    en.wikipedia.org/wiki/Irrationality_measure

    Rational numbers have irrationality exponent 1, while (as a consequence of Dirichlet's approximation theorem) every irrational number has irrationality exponent at least 2. On the other hand, an application of Borel-Cantelli lemma shows that almost all numbers, including all algebraic irrational numbers , have an irrationality exponent exactly ...

  8. Pi - Wikipedia

    en.wikipedia.org/wiki/Pi

    In addition to being irrational, π is also a transcendental number, which means that it is not the solution of any non-constant polynomial equation with rational coefficients, such as + =. [ 26 ] [ c ] This follows from the so-called Lindemann–Weierstrass theorem , which also establishes the transcendence of the constant e .

  9. Repeating decimal - Wikipedia

    en.wikipedia.org/wiki/Repeating_decimal

    A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.