enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Atomic radii of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Atomic_radii_of_the...

    The radius increases sharply between the noble gas at the end of each period and the alkali metal at the beginning of the next period. These trends of the atomic radii (and of various other chemical and physical properties of the elements) can be explained by the electron shell theory of the atom; they provided important evidence for the ...

  3. Atomic radius - Wikipedia

    en.wikipedia.org/wiki/Atomic_radius

    Under most definitions the radii of isolated neutral atoms range between 30 and 300 pm (trillionths of a meter), or between 0.3 and 3 ångströms. Therefore, the radius of an atom is more than 10,000 times the radius of its nucleus (1–10 fm), [2] and less than 1/1000 of the wavelength of visible light (400–700 nm).

  4. Ionic radius - Wikipedia

    en.wikipedia.org/wiki/Ionic_radius

    Ionic radius, r ion, is the radius of a monatomic ion in an ionic crystal structure. Although neither atoms nor ions have sharp boundaries, they are treated as if they were hard spheres with radii such that the sum of ionic radii of the cation and anion gives the distance between the ions in a crystal lattice .

  5. Earth radius - Wikipedia

    en.wikipedia.org/wiki/Earth_radius

    Earth radius (denoted as R 🜨 or R E) is the distance from the center of Earth to a point on or near its surface. Approximating the figure of Earth by an Earth spheroid (an oblate ellipsoid), the radius ranges from a maximum (equatorial radius, denoted a) of nearly 6,378 km (3,963 mi) to a minimum (polar radius, denoted b) of nearly 6,357 km (3,950 mi).

  6. Periodic trends - Wikipedia

    en.wikipedia.org/wiki/Periodic_trends

    The atomic radius is half of the distance between two nuclei of two atoms. The atomic radius is the distance from the atomic nucleus to the outermost electron orbital in an atom. In general, the atomic radius decreases as we move from left-to-right in a period, and it increases when we go down a group.

  7. Covalent radius - Wikipedia

    en.wikipedia.org/wiki/Covalent_radius

    The covalent radius, r cov, is a measure of the size of an atom that forms part of one covalent bond. It is usually measured either in picometres (pm) or angstroms (Å), with 1 Å = 100 pm. In principle, the sum of the two covalent radii should equal the covalent bond length between two atoms, R(AB) = r(A) + r(B).

  8. Charge radius - Wikipedia

    en.wikipedia.org/wiki/Charge_radius

    Rutherford put an upper limit on the radius of the gold nucleus of 34 femtometres. [7] Later studies found an empirical relation between the charge radius and the mass number, A, for heavier nuclei (A > 20): R ≈ r 0 A 1/3. where the empirical constant r 0 of 1.2–1.5 fm can be interpreted as the Compton wavelength of the proton.

  9. van der Waals radius - Wikipedia

    en.wikipedia.org/wiki/Van_der_Waals_radius

    The van der Waals radius, r w, of an atom is the radius of an imaginary hard sphere representing the distance of closest approach for another atom. It is named after Johannes Diderik van der Waals, winner of the 1910 Nobel Prize in Physics, as he was the first to recognise that atoms were not simply points and to demonstrate the physical consequences of their size through the van der Waals ...