Search results
Results from the WOW.Com Content Network
The process goes through the following steps: When the plant is operating in steady state, feed water at the cold inlet temperature flows, or is pumped, through the heat exchangers in the stages and warms up. When it reaches the brine heater it already has nearly the maximum temperature. In the heater, an amount of additional heat is added.
The desalination process's energy consumption depends on the water's salinity. Brackish water desalination requires less energy than seawater desalination. [82] The energy intensity of seawater desalination has improved: It is now about 3 kWh/m 3 (in 2018), down by a factor of 10 from 20-30 kWh/m 3 in 1970.
The first and last stages need external heating and cooling respectively. The amount of heat removed from the last stage must nearly equal the amount of heat supplied to the first stage. For sea water desalination, even the first and warmest stage is typically operated at a temperature below 70-75 °C, to avoid scale formation. [3]
The mass flow of pre-heated coolant leaves the condenser channel at a temperature of about 72 °C (162 °F) and enters a heat exchanger, thus pre-heating the feed water. This feed water is then delivered to a further heat source and finally enters the evaporator channel of the MD module at a temperature of 80 °C (176 °F).
Low temperature distillation (LTD) is a thermal distillation process in several stages, powered by temperature differences between heat and cooling sources of at least 5 K per stage. Two separate volume flows, a hot evaporator flow and a cool condenser flow, with different temperatures and vapor pressures, are sprayed in a combined pressure ...
Vapor-compression desalination (VC) refers to a distillation process where the evaporation of sea or saline water is obtained by the application of heat delivered by compressed vapor. Overview [ edit ]
Effect of temperature and salinity upon sea water density maximum and sea water freezing temperature. It has long been known that wind can drive ocean currents, but only at the surface. [ 12 ] In the 19th century, some oceanographers suggested that the convection of heat could drive deeper currents.
The process has the feature of inherently low fouling because of the forward osmosis first step, unlike conventional reverse osmosis desalination plants where fouling is often a problem. Modern Water has deployed forward osmosis based desalination plants in Gibraltar and Oman.