Search results
Results from the WOW.Com Content Network
Unsupervised learning is a framework in machine learning where, in contrast to supervised learning, algorithms learn patterns exclusively from unlabeled data. [1] Other frameworks in the spectrum of supervisions include weak- or semi-supervision , where a small portion of the data is tagged, and self-supervision .
Competitive learning is a form of unsupervised learning in artificial neural networks, in which nodes compete for the right to respond to a subset of the input data. [ 1 ] [ 2 ] A variant of Hebbian learning , competitive learning works by increasing the specialization of each node in the network.
The generalized Hebbian algorithm is an iterative algorithm to find the highest principal component vectors, in an algorithmic form that resembles unsupervised Hebbian learning in neural networks. Consider a one-layered neural network with n {\displaystyle n} input neurons and m {\displaystyle m} output neurons y 1 , … , y m {\displaystyle y ...
Deep learning algorithms can be applied to unsupervised learning tasks. This is an important benefit because unlabeled data are more abundant than the labeled data. Examples of deep structures that can be trained in an unsupervised manner are deep belief networks .
A self-organizing map (SOM) or self-organizing feature map (SOFM) is an unsupervised machine learning technique used to produce a low-dimensional (typically two-dimensional) representation of a higher-dimensional data set while preserving the topological structure of the data.
R, G are weights used by the wake-sleep algorithm to modify data inside the layers. The wake-sleep algorithm [1] is an unsupervised learning algorithm for deep generative models, especially Helmholtz Machines. [2] The algorithm is similar to the expectation-maximization algorithm, [3] and optimizes the model likelihood for observed data. [4]
Conceptual clustering is a machine learning paradigm for unsupervised classification that has been defined by Ryszard S. Michalski in 1980 (Fisher 1987, Michalski 1980) and developed mainly during the 1980s.
An autoencoder is a type of artificial neural network used to learn efficient codings of unlabeled data (unsupervised learning).An autoencoder learns two functions: an encoding function that transforms the input data, and a decoding function that recreates the input data from the encoded representation.