Search results
Results from the WOW.Com Content Network
Unsupervised learning is a framework in machine learning where, in contrast to supervised learning, algorithms learn patterns exclusively from unlabeled data. [1] Other frameworks in the spectrum of supervisions include weak- or semi-supervision , where a small portion of the data is tagged, and self-supervision .
Competitive learning is a form of unsupervised learning in artificial neural networks, in which nodes compete for the right to respond to a subset of the input data. [ 1 ] [ 2 ] A variant of Hebbian learning , competitive learning works by increasing the specialization of each node in the network.
The examples are usually administered several times as iterations. The training utilizes competitive learning. When a training example is fed to the network, its Euclidean distance to all weight vectors is computed. The neuron whose weight vector is most similar to the input is called the best matching unit (BMU). The weights of the BMU and ...
However, its name makes sense when we compare LDA to the other main linear dimensionality reduction algorithm: principal components analysis (PCA). LDA is a supervised learning algorithm that utilizes the labels of the data, while PCA is an unsupervised learning algorithm that ignores the labels. To summarize, the name is a historical artifact.
First a supervised learning algorithm is trained based on the labeled data only. This classifier is then applied to the unlabeled data to generate more labeled examples as input for the supervised learning algorithm. Generally only the labels the classifier is most confident in are added at each step. [15]
Algorithms for pattern recognition depend on the type of label output, on whether learning is supervised or unsupervised, and on whether the algorithm is statistical or non-statistical in nature. Statistical algorithms can further be categorized as generative or discriminative.
An example of unsupervised dictionary learning is sparse coding, which aims to learn basis functions (dictionary elements) for data representation from unlabeled input data. Sparse coding can be applied to learn overcomplete dictionaries, where the number of dictionary elements is larger than the dimension of the input data. [ 21 ]
An autoencoder is a type of artificial neural network used to learn efficient codings of unlabeled data (unsupervised learning).An autoencoder learns two functions: an encoding function that transforms the input data, and a decoding function that recreates the input data from the encoded representation.