Search results
Results from the WOW.Com Content Network
Non-parametric (or distribution-free) inferential statistical methods are mathematical procedures for statistical hypothesis testing which, unlike parametric statistics, make no assumptions about the probability distributions of the variables being assessed. The most frequently used tests include
Assumptions, parametric and non-parametric: There are two groups of statistical tests, parametric and non-parametric. The choice between these two groups needs to be justified. The choice between these two groups needs to be justified.
Nonparametric regression is a category of regression analysis in which the predictor does not take a predetermined form but is constructed according to information derived from the data. That is, no parametric equation is assumed for the relationship between predictors and dependent variable.
Vinod (2006), [31] presents a method that bootstraps time series data using maximum entropy principles satisfying the Ergodic theorem with mean-preserving and mass-preserving constraints. There is an R package, meboot, [32] that utilizes the method, which has applications in econometrics and computer science.
In statistics, kernel regression is a non-parametric technique to estimate the conditional expectation of a random variable.The objective is to find a non-linear relation between a pair of random variables X and Y.
Permutation tests are a subset of non-parametric statistics. Assuming that our experimental data come from data measured from two treatment groups, the method simply generates the distribution of mean differences under the assumption that the two groups are not distinct in terms of the measured variable.
Nonparametric models are therefore also called distribution free. Nonparametric (or distribution-free) inferential statistical methods are mathematical procedures for statistical hypothesis testing which, unlike parametric statistics, make no assumptions about the frequency distributions of the variables being assessed.
Not all statistical packages support post-hoc analysis for Friedman's test, but user-contributed code exists that provides these facilities (for example in SPSS, [10] and in R. [11]). Also, there is a specialized package available in R containing numerous non-parametric methods for post-hoc analysis after Friedman. [12]