enow.com Web Search

  1. Ad

    related to: greatest common divisor linear combination

Search results

  1. Results from the WOW.Com Content Network
  2. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    The greatest common divisor g of two nonzero numbers a and b is also their smallest positive integral linear combination, that is, the smallest positive number of the form ua + vb where u and v are integers.

  3. Polynomial greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Polynomial_greatest_common...

    For two univariate polynomials p and q over a field, there exist polynomials a and b, such that (,) = + and (,) divides every such linear combination of p and q (Bézout's identity). The greatest common divisor of three or more polynomials may be defined similarly as for two polynomials.

  4. Bézout domain - Wikipedia

    en.wikipedia.org/wiki/Bézout_domain

    A ring is a Bézout domain if and only if it is an integral domain in which any two elements have a greatest common divisor that is a linear combination of them: this is equivalent to the statement that an ideal which is generated by two elements is also generated by a single element, and induction demonstrates that all finitely generated ideals are principal.

  5. Bézout's identity - Wikipedia

    en.wikipedia.org/wiki/Bézout's_identity

    As an example, the greatest common divisor of 15 and 69 is 3, and 3 can be written as a combination of 15 and 69 as 3 = 15 × (−9) + 69 × 2, with Bézout coefficients −9 and 2. Many other theorems in elementary number theory, such as Euclid's lemma or the Chinese remainder theorem , result from Bézout's identity.

  6. Euclidean domain - Wikipedia

    en.wikipedia.org/wiki/Euclidean_domain

    In particular, the greatest common divisor of any two elements exists and can be written as a linear combination of them (Bézout's identity). Also every ideal in a Euclidean domain is principal, which implies a suitable generalization of the fundamental theorem of arithmetic: every Euclidean domain is a unique factorization domain.

  7. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer.

  8. Extended Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Extended_Euclidean_algorithm

    A third difference is that, in the polynomial case, the greatest common divisor is defined only up to the multiplication by a non zero constant. There are several ways to define unambiguously a greatest common divisor. In mathematics, it is common to require that the greatest common divisor be a monic polynomial.

  9. Principal ideal domain - Wikipedia

    en.wikipedia.org/wiki/Principal_ideal_domain

    An integral domain is a UFD if and only if it is a GCD domain (i.e., a domain where every two elements have a greatest common divisor) satisfying the ascending chain condition on principal ideals. An integral domain is a Bézout domain if and only if any two elements in it have a gcd that is a linear combination of the two.

  1. Ad

    related to: greatest common divisor linear combination