Search results
Results from the WOW.Com Content Network
Polynomial filters for interior eigenvalues. SVD contains solvers for the singular value decomposition as well as the generalized singular value decomposition. Solvers based on the cross-product matrix or the cyclic matrix, that rely on EPS solvers. Specific solvers based on bidiagonalization such as Golub-Kahan-Lanczos and a thick-restarted ...
In mathematics, Neville's algorithm is an algorithm used for polynomial interpolation that was derived by the mathematician Eric Harold Neville in 1934. Given n + 1 points, there is a unique polynomial of degree ≤ n which goes through the given points. Neville's algorithm evaluates this polynomial.
Bulirsch and Stoer recognized that using rational functions as fitting functions for Richardson extrapolation in numerical integration is superior to using polynomial functions because rational functions are able to approximate functions with poles rather well (compared to polynomial functions), given that there are enough higher-power terms in ...
In numerical analysis, polynomial interpolation is the interpolation of a given bivariate data set by the polynomial of lowest possible degree that passes through the points of the dataset. [ 1 ]
Download QR code; Print/export ... it may be preferable to replace the polynomial interpolation of ... The result in the lower right corner of the triangular array is ...
This product is a monic polynomial of degree n. It may be shown that the maximum absolute value (maximum norm) of any such polynomial is bounded from below by 2 1−n. This bound is attained by the scaled Chebyshev polynomials 2 1−n T n, which are also monic. (Recall that |T n (x)| ≤ 1 for x ∈ [−1, 1]. [5])
Aitken interpolation is an algorithm used for polynomial interpolation that was derived by the mathematician Alexander Aitken. It is similar to Neville's algorithm . See also Aitken's delta-squared process or Aitken extrapolation .
A better form of the interpolation polynomial for practical (or computational) purposes is the barycentric form of the Lagrange interpolation (see below) or Newton polynomials. Lagrange and other interpolation at equally spaced points, as in the example above, yield a polynomial oscillating above and below the true function.