Search results
Results from the WOW.Com Content Network
The original use of interpolation polynomials was to approximate values of important transcendental functions such as natural logarithm and trigonometric functions.Starting with a few accurately computed data points, the corresponding interpolation polynomial will approximate the function at an arbitrary nearby point.
It can be seen as a module of PETSc that provides solvers for different types of eigenproblems, including linear (standard and generalized) and nonlinear (quadratic, polynomial and general), as well as the SVD. Recent versions also include support for matrix functions. It uses the MPI standard for parallelization. Both real and complex ...
A typical example of a Chebyshev space is the subspace of Chebyshev polynomials of order n in the space of real continuous functions on an interval, C[a, b]. The polynomial of best approximation within a given subspace is defined to be the one that minimizes the maximum absolute difference between the polynomial
In mathematics, Neville's algorithm is an algorithm used for polynomial interpolation that was derived by the mathematician Eric Harold Neville in 1934. Given n + 1 points, there is a unique polynomial of degree ≤ n which goes through the given points. Neville's algorithm evaluates this polynomial.
Smoothstep is a family of sigmoid-like interpolation and clamping functions commonly used in computer graphics, [1] [2] video game engines, [3] and machine learning. [ 4 ] The function depends on three parameters, the input x , the "left edge" and the "right edge", with the left edge being assumed smaller than the right edge.
That is, the map from coefficients to values of polynomials is a bijective linear mapping with matrix V, and the interpolation problem has a unique solution. This result is called the unisolvence theorem , and is a special case of the Chinese remainder theorem for polynomials .
The Chebyshev nodes are important in approximation theory because they form a particularly good set of nodes for polynomial interpolation. Given a function f on the interval [, +] and points ,, …,, in that interval, the interpolation polynomial is that unique polynomial of degree at most which has value () at each point .
Given a continuous function defined from [,] to such that () (), where at the cost of one query one can access the values of () on any given .And, given a pre-specified target precision >, a root-finding algorithm is designed to solve the following problem with the least amount of queries as possible: