Search results
Results from the WOW.Com Content Network
To split an AVL tree into two smaller trees, those smaller than key k, and those greater than key k, first draw a path from the root by inserting k into the AVL. After this insertion, all values less than k will be found on the left of the path, and all values greater than k will be found on the right.
An augmented tree can be built from a simple ordered tree, for example a binary search tree or self-balancing binary search tree, ordered by the 'low' values of the intervals. An extra annotation is then added to every node, recording the maximum upper value among all the intervals from this node down.
This is a list of well-known data structures. For a wider list of terms, see list of terms relating to algorithms and data structures. For a comparison of running times for a subset of this list see comparison of data structures.
To turn a regular search tree into an order statistic tree, the nodes of the tree need to store one additional value, which is the size of the subtree rooted at that node (i.e., the number of nodes below it). All operations that modify the tree must adjust this information to preserve the invariant that size[x] = size[left[x]] + size[right[x]] + 1
For example, if binary tree sort is implemented with a self-balancing BST, we have a very simple-to-describe yet asymptotically optimal () sorting algorithm. Similarly, many algorithms in computational geometry exploit variations on self-balancing BSTs to solve problems such as the line segment intersection problem and the point location ...
In 2016, Blelloch et al. formally proposed the join-based algorithms, and formalized the join algorithm for four different balancing schemes: AVL trees, red–black trees, weight-balanced trees and treaps. In the same work they proved that Adams' algorithms on union, intersection and difference are work-optimal on all the four balancing schemes.
A query for a segment tree receives a point q x (should be one of the leaves of tree), and retrieves a list of all the segments stored which contain the point q x. Formally stated; given a node (subtree) v and a query point q x, the query can be done using the following algorithm: Report all the intervals in I(v). If v is not a leaf:
The depth of a tree is the maximum depth of any vertex. Depth is commonly needed in the manipulation of the various self-balancing trees, AVL trees in particular. The root has depth zero, leaves have height zero, and a tree with only a single vertex (hence both a root and leaf) has depth and height zero.