Search results
Results from the WOW.Com Content Network
Then for an ideal gas the compressible Euler equations can be simply expressed in the mechanical or primitive variables specific volume, flow velocity and pressure, by taking the set of the equations for a thermodynamic system and modifying the energy equation into a pressure equation through this mechanical equation of state. At last, in ...
Compressible flow (or gas dynamics) is the branch of fluid mechanics that deals with flows having significant changes in fluid density.While all flows are compressible, flows are usually treated as being incompressible when the Mach number (the ratio of the speed of the flow to the speed of sound) is smaller than 0.3 (since the density change due to velocity is about 5% in that case). [1]
A gas is said to be in local equilibrium if it satisfies this equation. [4] The assumption of local equilibrium leads directly to the Euler equations, which describe fluids without dissipation, i.e. with thermal conductivity and viscosity equal to . The primary goal of Chapman–Enskog theory is to systematically obtain generalizations of the ...
The equation above is a vector equation in a three-dimensional flow, but it can be expressed as three scalar equations in three coordinate directions. The conservation of momentum equations for the compressible, viscous flow case is called the Navier–Stokes equations. [2] Conservation of energy
As a result, the mass-conservation and momentum-conservation equations are decoupled from the energy-conservation equation, so one only needs to solve for the first two equations. [45] Compressible Euler equations (EE): Start with the C-NS. Assume a frictionless flow with no diffusive heat flux. [47]
Each pair in the equation are known as a conjugate pair with respect to the internal energy. The intensive variables may be viewed as a generalized "force". An imbalance in the intensive variable will cause a "flow" of the extensive variable in a direction to counter the imbalance. The equation may be seen as a particular case of the chain rule.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
With the help of these equations the head developed by a pump and the head utilised by a turbine can be easily determined. As the name suggests these equations were formulated by Leonhard Euler in the eighteenth century. [1] These equations can be derived from the moment of momentum equation when applied for a pump or a turbine.