Search results
Results from the WOW.Com Content Network
The applied tension () is a function of the total angle subtended by the rope on the capstan. On the verge of slipping, this is also the frictional force, which is by definition μ {\textstyle \mu } times the normal force R ( φ ) {\displaystyle R(\varphi )} .
The angle of a drop of the liquid on the solid as seen in Figure 1 degrees or radians 1-cos(θ SL) The y-axis of the Zisman Plot representing wetting unitless γ L: The surface tension of the respective liquid dyne / cm γ C: The critical surface tension of the liquid needed to effectively wet the solid substrate dyne / cm
Tension is the pulling or stretching force transmitted axially along an object such as a string, rope, chain, rod, truss member, or other object, so as to stretch or pull apart the object. In terms of force, it is the opposite of compression. Tension might also be described as the action-reaction pair of forces acting at each end of an object.
Trajectory of a particle with initial position vector r 0 and velocity v 0, subject to constant acceleration a, all three quantities in any direction, and the position r(t) and velocity v(t) after time t. The initial position, initial velocity, and acceleration vectors need not be collinear, and the equations of motion take an almost identical ...
Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the x-axis. Multiplying the velocity by the time, the time cancels out, and only displacement remains.)
Multiplying by the operator [S], the formula for the velocity v P takes the form: = [] + ˙ = / +, where the vector ω is the angular velocity vector obtained from the components of the matrix [Ω]; the vector / =, is the position of P relative to the origin O of the moving frame M; and = ˙, is the velocity of the origin O.
A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.
The Coriolis force acts in a direction perpendicular to two quantities: the angular velocity of the rotating frame relative to the inertial frame and the velocity of the body relative to the rotating frame, and its magnitude is proportional to the object's speed in the rotating frame (more precisely, to the component of its velocity that is ...