Search results
Results from the WOW.Com Content Network
The Stanton number arises in the consideration of the geometric similarity of the momentum boundary layer and the thermal boundary layer, where it can be used to express a relationship between the shear force at the wall (due to viscous drag) and the total heat transfer at the wall (due to thermal diffusivity).
The boundary layer thickness, , is the distance normal to the wall to a point where the flow velocity has essentially reached the 'asymptotic' velocity, .Prior to the development of the Moment Method, the lack of an obvious method of defining the boundary layer thickness led much of the flow community in the later half of the 1900s to adopt the location , denoted as and given by
The basis of the Falkner-Skan approach are the Prandtl boundary layer equations. Ludwig Prandtl [2] simplified the equations for fluid flowing along a wall (wedge) by dividing the flow into two areas: one close to the wall dominated by viscosity, and one outside this near-wall boundary layer region where viscosity can be neglected without significant effects on the solution.
The boundary layer around a human hand, schlieren photograph. The boundary layer is the bright-green border, most visible on the back of the hand (click for high-res image). In physics and fluid mechanics, a boundary layer is the thin layer of fluid in the immediate vicinity of a bounding surface formed by
This turbulent boundary layer thickness formula assumes 1) the flow is turbulent right from the start of the boundary layer and 2) the turbulent boundary layer behaves in a geometrically similar manner (i.e. the velocity profiles are geometrically similar along the flow in the x-direction, differing only by stretching factors in and (,) [5 ...
In fluid dynamics, the von Kármán constant (or Kármán's constant), named for Theodore von Kármán, is a dimensionless constant involved in the logarithmic law describing the distribution of the longitudinal velocity in the wall-normal direction of a turbulent fluid flow near a boundary with a no-slip condition.
In fluid dynamics, a Tollmien–Schlichting wave (often abbreviated T-S wave) is a streamwise unstable wave which arises in a bounded shear flow (such as boundary layer and channel flow). It is one of the more common methods by which a laminar bounded shear flow transitions to turbulence .
The Reynolds Analogy is popularly known to relate turbulent momentum and heat transfer. [1] That is because in a turbulent flow (in a pipe or in a boundary layer) the transport of momentum and the transport of heat largely depends on the same turbulent eddies: the velocity and the temperature profiles have the same shape.