Search results
Results from the WOW.Com Content Network
A stationary object (or set of objects) is in "static equilibrium," which is a special case of mechanical equilibrium. A paperweight on a desk is an example of static equilibrium. Other examples include a rock balance sculpture, or a stack of blocks in the game of Jenga, so long as the sculpture or stack of blocks is not in the state of collapsing.
The static equilibrium of a particle is an important concept in statics. A particle is in equilibrium only if the resultant of all forces acting on the particle is equal to zero. In a rectangular coordinate system the equilibrium equations can be represented by three scalar equations, where the sums of forces in all three directions are equal ...
Every object perseveres in its state of rest, or of uniform motion in a right line, except insofar as it is compelled to change that state by forces impressed thereon. [note 3] Newton's first law expresses the principle of inertia: the natural behavior of a body is to move in a straight line at constant speed. A body's motion preserves the ...
A body is in static equilibrium with respect to a frame of reference if it at rest and not accelerating, whereas a body in dynamic equilibrium is moving at a constant speed in a straight line, i.e., moving but not accelerating. What one observer sees as static equilibrium, another can see as dynamic equilibrium and vice versa. [17]: 566
Typically, a human's center of mass is detected with one of two methods: the reaction board method is a static analysis that involves the person lying down on that instrument, and use of their static equilibrium equation to find their center of mass; the segmentation method relies on a mathematical solution based on the physical principle that ...
Since every particle needs to be in equilibrium, this reaction stress will generally propagate from particle to particle, creating a stress distribution throughout the body. The typical problem in stress analysis is to determine these internal stresses, given the external forces that are acting on the system.
The inertial force must act through the center of mass and the inertial torque can act anywhere. The system can then be analyzed exactly as a static system subjected to this "inertial force and moment" and the external forces. The advantage is that in the equivalent static system one can take moments about any point (not just the center of mass).
The word equilibrium implies a state of balance. Equilibrium thermodynamics, in origins, derives from analysis of the Carnot cycle. Here, typically a system, as cylinder of gas, initially in its own state of internal thermodynamic equilibrium, is set out of balance via heat input from a combustion reaction. Then, through a series of steps, as ...