Search results
Results from the WOW.Com Content Network
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
In computer science, a red–black tree is a self-balancing binary search tree data structure noted for fast storage and retrieval of ordered information. The nodes in a red-black tree hold an extra "color" bit, often drawn as red and black, which help ensure that the tree is always approximately balanced.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
File:Red-black trees and 2–3–4 trees.svg. Add languages. ... Upload file; Special pages; Printable version; Page information; Get shortened URL; Download QR code
AA trees are named after their originator, Swedish computer scientist Arne Andersson. [1] AA trees are a variation of the red–black tree, a form of binary search tree which supports efficient addition and deletion of entries. Unlike red–black trees, red nodes on an AA tree can only be added as a right subchild.
One property of a 2–3–4 tree is that all external nodes are at the same depth. 2–3–4 trees are closely related to red–black trees by interpreting red links (that is, links to red children) as internal links of 3-nodes and 4-nodes, although this correspondence is not one-to-one. [2]