Search results
Results from the WOW.Com Content Network
SVM light is a collection of software tools for learning and classification using SVM SVMJS live demo Archived 2013-05-05 at the Wayback Machine is a GUI demo for JavaScript implementation of SVMs Authority control databases : National
In machine learning, kernel machines are a class of algorithms for pattern analysis, whose best known member is the support-vector machine (SVM). These methods involve using linear classifiers to solve nonlinear problems. [1]
Least-squares support-vector machines (LS-SVM) for statistics and in statistical modeling, are least-squares versions of support-vector machines (SVM), which are a set of related supervised learning methods that analyze data and recognize patterns, and which are used for classification and regression analysis.
The structured support-vector machine is a machine learning algorithm that generalizes the Support-Vector Machine (SVM) classifier. Whereas the SVM classifier supports binary classification , multiclass classification and regression , the structured SVM allows training of a classifier for general structured output labels .
The plot shows that the Hinge loss penalizes predictions y < 1, corresponding to the notion of a margin in a support vector machine. In machine learning, the hinge loss is a loss function used for training classifiers. The hinge loss is used for "maximum-margin" classification, most notably for support vector machines (SVMs). [1]
Machine learning (ML) is a field of ... An SVM training algorithm is a non-probabilistic, binary, linear classifier, although methods such as Platt scaling exist to ...
Within mathematical analysis, Regularization perspectives on support-vector machines provide a way of interpreting support-vector machines (SVMs) in the context of other regularization-based machine-learning algorithms. SVM algorithms categorize binary data, with the goal of fitting the training set data in a way that minimizes the average of ...
In machine learning, a ranking SVM is a variant of the support vector machine algorithm, which is used to solve certain ranking problems (via learning to rank). The ranking SVM algorithm was published by Thorsten Joachims in 2002. [1] The original purpose of the algorithm was to improve the performance of an internet search engine. However, it ...