Search results
Results from the WOW.Com Content Network
495: the last digit is 5. 6: It is divisible by 2 and by 3. [6] 1,458: 1 + 4 + 5 + 8 = 18, so it is divisible by 3 and the last digit is even, hence the number is divisible by 6. Sum the ones digit, 4 times the 10s digit, 4 times the 100s digit, 4 times the 1000s digit, etc. If the result is divisible by 6, so is the original number.
Given an integer n (n refers to "the integer to be factored"), the trial division consists of systematically testing whether n is divisible by any smaller number. Clearly, it is only worthwhile to test candidate factors less than n, and in order from two upwards because an arbitrary n is more likely to be divisible by two than by three, and so on.
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.
Since 2 divides , +, and +, and 3 divides and +, the only possible remainders mod 6 for a prime greater than 3 are 1 and 5. So, a more efficient primality test for n {\displaystyle n} is to test whether n {\displaystyle n} is divisible by 2 or 3, then to check through all numbers of the form 6 k + 1 {\displaystyle 6k+1} and 6 k + 5 ...
A number is divisible by 4 if its penultimate digit is odd and its final digit is 2, or its penultimate digit is even and its final digit is 0 or 4. A number is divisible by 5 if the sum of its senary digits is divisible by 5 (the equivalent of casting out nines in decimal). If a number is divisible by 6, then the final digit of that number is 0.
The following is pseudocode which combines Atkin's algorithms 3.1, 3.2, and 3.3 [1] by using a combined set s of all the numbers modulo 60 excluding those which are multiples of the prime numbers 2, 3, and 5, as per the algorithms, for a straightforward version of the algorithm that supports optional bit-packing of the wheel; although not specifically mentioned in the referenced paper, this ...
The divisors of 10 illustrated with Cuisenaire rods: 1, 2, 5, and 10 In mathematics , a divisor of an integer n , {\displaystyle n,} also called a factor of n , {\displaystyle n,} is an integer m {\displaystyle m} that may be multiplied by some integer to produce n . {\displaystyle n.} [ 1 ] In this case, one also says that n {\displaystyle n ...
For example, 10 is a multiple of 5 because 5 × 2 = 10, so 10 is divisible by 5 and 2. Because 10 is the smallest positive integer that is divisible by both 5 and 2, it is the least common multiple of 5 and 2. By the same principle, 10 is the least common multiple of −5 and −2 as well.