Search results
Results from the WOW.Com Content Network
A rhombus has all sides equal, while a rectangle has all angles equal. A rhombus has opposite angles equal, while a rectangle has opposite sides equal. A rhombus has an inscribed circle, while a rectangle has a circumcircle. A rhombus has an axis of symmetry through each pair of opposite vertex angles, while a rectangle has an axis of symmetry ...
A square can also be defined as a parallelogram with equal diagonals that bisect the angles. If a figure is both a rectangle (right angles) and a rhombus (equal edge lengths), then it is a square. A square has a larger area than any other quadrilateral with the same perimeter. [7]
In Euclidean plane geometry, a rectangle is a rectilinear convex polygon or a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal (360°/4 = 90°); or a parallelogram containing a right angle. A rectangle with four sides of equal length is a square.
A rhombus is an orthodiagonal quadrilateral with two pairs of parallel sides (that is, an orthodiagonal quadrilateral that is also a parallelogram). A square is a limiting case of both a kite and a rhombus. Orthodiagonal quadrilaterals that are also equidiagonal quadrilaterals are called midsquare quadrilaterals. [2]
An equivalent condition is that opposite sides are parallel (a square is a parallelogram), and that the diagonals perpendicularly bisect each other and are of equal length. A quadrilateral is a square if and only if it is both a rhombus and a rectangle (i.e., four equal sides and four equal angles).
a square: a rhombus that has interior angles which are all right angles. In fact, the definition of a square may be recast in terms of both of the abstractions, where one acts as the genus and the other acts as the differentia: a square: a rectangle that is a rhombus. a square: a rhombus that is a rectangle.
Additionally, if a convex kite is not a rhombus, there is a circle outside the kite that is tangent to the extensions of the four sides; therefore, every convex kite that is not a rhombus is an ex-tangential quadrilateral. The convex kites that are not rhombi are exactly the quadrilaterals that are both tangential and ex-tangential. [16]
A shape is a circle because it looks like a sun; a shape is a rectangle because it looks like a door or a box; and so on. A square seems to be a different sort of shape than a rectangle, and a rhombus does not look like other parallelograms, so these shapes are classified completely separately in the child’s mind.