Ads
related to: introduction to smooth manifold and gasket diagramebay.com has been visited by 1M+ users in the past month
Search results
Results from the WOW.Com Content Network
Symplectic manifolds arise from classical mechanics; in particular, they are a generalization of the phase space of a closed system. [1] In the same way the Hamilton equations allow one to derive the time evolution of a system from a set of differential equations, the symplectic form should allow one to obtain a vector field describing the flow of the system from the differential of a ...
Conversely, given any contact manifold M, the product M×R has a natural structure of a symplectic manifold. If α is a contact form on M, then ω = d(e t α) is a symplectic form on M×R, where t denotes the variable in the R-direction. This new manifold is called the symplectization (sometimes symplectification in the literature) of the ...
It follows that is a regular value of , so () and its quotient / are both smooth manifolds. The quotient inherits a symplectic form from M {\displaystyle M} ; that is, there is a unique symplectic form on the quotient whose pullback to μ − 1 ( 0 ) {\displaystyle \mu ^{-1}(0)} equals the restriction of ω {\displaystyle \omega } to μ − 1 ...
Let :, (,) be a (left) group action of a Lie group on a smooth manifold ; it is called a Lie group action (or smooth action) if the map is differentiable. Equivalently, a Lie group action of G {\displaystyle G} on M {\displaystyle M} consists of a Lie group homomorphism G → D i f f ( M ) {\displaystyle G\to \mathrm {Diff} (M)} .
Important to applications in mathematics and physics [1] is the notion of a flow on a manifold. In particular, if is a smooth manifold and is a smooth vector field, one is interested in finding integral curves to .
Introduction to smooth manifolds. New York: Springer. ISBN 0-387-95448-1. A textbook on manifold theory. See also the same author's textbooks on topological manifolds (a lower level of structure) and Riemannian geometry (a higher level of structure).
The objects of Man • p are pairs (,), where is a manifold along with a basepoint , and its morphisms are basepoint-preserving p-times continuously differentiable maps: e.g. : (,) (,), such that () =. [1] The category of pointed manifolds is an example of a comma category - Man • p is exactly ({}), where {} represents an arbitrary singleton ...
In mathematics, differential topology is the field dealing with the topological properties and smooth properties [a] of smooth manifolds.In this sense differential topology is distinct from the closely related field of differential geometry, which concerns the geometric properties of smooth manifolds, including notions of size, distance, and rigid shape.
Ads
related to: introduction to smooth manifold and gasket diagramebay.com has been visited by 1M+ users in the past month