Search results
Results from the WOW.Com Content Network
The data set [90, 100, 110] has more variability. Its standard deviation is 10 and its average is 100, giving the coefficient of variation as 10 / 100 = 0.1; The data set [1, 5, 6, 8, 10, 40, 65, 88] has still more variability. Its standard deviation is 32.9 and its average is 27.9, giving a coefficient of variation of 32.9 / 27.9 = 1.18
Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).
Similarly, for a regression analysis, an analyst would report the coefficient of determination (R 2) and the model equation instead of the model's p-value. However, proponents of estimation statistics warn against reporting only a few numbers. Rather, it is advised to analyze and present data using data visualization.
In this case efficiency can be defined as the square of the coefficient of variation, i.e., [13] e ≡ ( σ μ ) 2 {\displaystyle e\equiv \left({\frac {\sigma }{\mu }}\right)^{2}} Relative efficiency of two such estimators can thus be interpreted as the relative sample size of one required to achieve the certainty of the other.
There are several types of indices used for the analysis of nominal data. Several are standard statistics that are used elsewhere - range, standard deviation, variance, mean deviation, coefficient of variation, median absolute deviation, interquartile range and quartile deviation.
The phenomenon was that the heights of descendants of tall ancestors tend to regress down towards a normal average (a phenomenon also known as regression toward the mean). [ 7 ] [ 8 ] For Galton, regression had only this biological meaning, [ 9 ] [ 10 ] but his work was later extended by Udny Yule and Karl Pearson to a more general statistical ...
This data set gives average masses for women as a function of their height in a sample of American women of age 30–39. Although the OLS article argues that it would be more appropriate to run a quadratic regression for this data, the simple linear regression model is applied here instead.
In statistics, the Fano factor, [1] like the coefficient of variation, is a measure of the dispersion of a counting process. It was originally used to measure the Fano noise in ion detectors. It is named after Ugo Fano, an Italian-American physicist. The Fano factor after a time is defined as