Search results
Results from the WOW.Com Content Network
In mathematics, reflection symmetry, line symmetry, mirror symmetry, or mirror-image symmetry is symmetry with respect to a reflection. That is, a figure which does not change upon undergoing a reflection has reflectional symmetry. In 2-dimensional space, there is a line/axis of symmetry, in 3-dimensional space, there is a plane of symmetry
C i (equivalent to S 2) – inversion symmetry; C 2 – 2-fold rotational symmetry; C s (equivalent to C 1h and C 1v) – reflection symmetry, also called bilateral symmetry. Patterns on a cylindrical band illustrating the case n = 6 for each of the 7 infinite families of point groups. The symmetry group of each pattern is the indicated group.
The equation of hydrostatic equilibrium may need to be modified by adding a radial acceleration term if the radius of the star is changing very quickly, for example if the star is radially pulsating. [9] Also, if the nuclear burning is not stable, or the star's core is rapidly collapsing, an entropy term must be added to the energy equation. [10]
The above ideas lead to the useful idea of invariance when discussing observed physical symmetry; this can be applied to symmetries in forces as well.. For example, an electric field due to an electrically charged wire of infinite length is said to exhibit cylindrical symmetry, because the electric field strength at a given distance r from the wire will have the same magnitude at each point on ...
The role of symmetry in grouping and figure/ground organization has been confirmed in many studies. For instance, detection of reflectional symmetry is faster when this is a property of a single object. [29] Studies of human perception and psychophysics have shown that detection of symmetry is fast, efficient and robust to perturbations.
While both the equations of motion and Poisson Equation can also take on non-spherical forms, depending on the coordinate system and the symmetry of the physical system, the essence is the same: The motions of stars in a galaxy or in a globular cluster are principally determined by the average distribution of the other, distant stars.
A point reflection is an involution: applying it twice is the identity transformation. An object that is invariant under a point reflection is said to possess point symmetry (also called inversion symmetry or central symmetry). A point group including a point reflection among its symmetries is called centrosymmetric.
A drawing of a butterfly with bilateral symmetry, with left and right sides as mirror images of each other.. In geometry, an object has symmetry if there is an operation or transformation (such as translation, scaling, rotation or reflection) that maps the figure/object onto itself (i.e., the object has an invariance under the transform). [1]