Search results
Results from the WOW.Com Content Network
If constructive arithmetic is translated using realizability into a classical meta-theory that proves the -consistency of the relevant classical theory (for example, Peano arithmetic if we are studying Heyting arithmetic), then Markov's principle is justified: a realizer is the constant function that takes a realization that is not everywhere ...
The "Markov" in "Markov decision process" refers to the underlying structure of state transitions that still follow the Markov property. The process is called a "decision process" because it involves making decisions that influence these state transitions, extending the concept of a Markov chain into the realm of decision-making under uncertainty.
Markov's inequality (and other similar inequalities) relate probabilities to expectations, and provide (frequently loose but still useful) bounds for the cumulative distribution function of a random variable. Markov's inequality can also be used to upper bound the expectation of a non-negative random variable in terms of its distribution function.
A Markov chain is a type of Markov process that has either a discrete state space or a discrete index set (often representing time), but the precise definition of a Markov chain varies. [6] For example, it is common to define a Markov chain as a Markov process in either discrete or continuous time with a countable state space (thus regardless ...
If f(t) is a non-decreasing scalar function of t, then Z(t) = X(f(t)) is also a Gauss–Markov process If the process is non-degenerate and mean-square continuous, then there exists a non-zero scalar function h ( t ) and a strictly increasing scalar function f ( t ) such that X ( t ) = h ( t ) W ( f ( t )), where W ( t ) is the standard Wiener ...
Figure 1. Probabilistic parameters of a hidden Markov model (example) X — states y — possible observations a — state transition probabilities b — output probabilities. In its discrete form, a hidden Markov process can be visualized as a generalization of the urn problem with replacement (where each item from the urn is returned to the original urn before the next step). [7]
A game of snakes and ladders or any other game whose moves are determined entirely by dice is a Markov chain, indeed, an absorbing Markov chain. This is in contrast to card games such as blackjack, where the cards represent a 'memory' of the past moves. To see the difference, consider the probability for a certain event in the game.
For example, a series of simple observations, such as a person's location in a room, can be interpreted to determine more complex information, such as in what task or activity the person is performing. Two kinds of Hierarchical Markov Models are the Hierarchical hidden Markov model [2] and the Abstract Hidden Markov Model. [3]