enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Coulomb's law - Wikipedia

    en.wikipedia.org/wiki/Coulomb's_law

    Coulomb's inverse-square law, or simply Coulomb's law, is an experimental law [1] of physics that calculates the amount of force between two electrically charged particles at rest. This electric force is conventionally called the electrostatic force or Coulomb force . [ 2 ]

  3. Electric potential energy - Wikipedia

    en.wikipedia.org/wiki/Electric_potential_energy

    When talking about electrostatic potential energy, time-invariant electric fields are always assumed so, in this case, the electric field is conservative and Coulomb's law can be used. Using Coulomb's law, it is known that the electrostatic force F and the electric field E created by a discrete point charge Q are radially directed from Q.

  4. Electricity - Wikipedia

    en.wikipedia.org/wiki/Electricity

    In most applications, Coulomb's law determines the force acting on an electric charge. Electric potential is the work done to move an electric charge from one point to another within an electric field, typically measured in volts .

  5. Heaviside–Lorentz units - Wikipedia

    en.wikipedia.org/wiki/Heaviside–Lorentz_units

    Coulomb's equation, used to define charge in these systems, is F = q G 1 q G 2 / r 2 in the Gaussian system, and F = q HL 1 q HL 2 / (4πr 2) in the HL system. The unit of charge then connects to 1 dyn⋅cm 2 = 1 statC 2 = 4π HLC 2, where 'HLC' is the HL unit of charge.

  6. Relativistic electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Relativistic_electromagnetism

    Rosser's book Classical Electromagnetism via Relativity was popular, [9] as was Anthony French's treatment in his textbook [10] which illustrated diagrammatically the proper charge density. One author proclaimed, "Maxwell — Out of Newton, Coulomb, and Einstein".

  7. Electric field - Wikipedia

    en.wikipedia.org/wiki/Electric_field

    These forces are described by Coulomb's law, which says that the greater the magnitude of the charges, the greater the force, and the greater the distance between them, the weaker the force. Informally, the greater the charge of an object, the stronger its electric field.

  8. Electric charge - Wikipedia

    en.wikipedia.org/wiki/Electric_charge

    Coulomb's law quantifies the electrostatic force between two particles by asserting that the force is proportional to the product of their charges, and inversely proportional to the square of the distance between them. The charge of an antiparticle equals that of the corresponding particle, but with opposite sign.

  9. Electrostatics - Wikipedia

    en.wikipedia.org/wiki/Electrostatics

    It is defined as the electrostatic force , on a hypothetical small test charge at the point due to Coulomb's law, divided by the charge = Electric field lines are useful for visualizing the electric field. Field lines begin on positive charge and terminate on negative charge.