enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Binomial heap - Wikipedia

    en.wikipedia.org/wiki/Binomial_heap

    To merge two binomial trees of the same order, first compare the root key. Since 7>3, the black tree on the left (with root node 7) is attached to the grey tree on the right (with root node 3) as a subtree. The result is a tree of order 3. The operation of merging two heaps is used as a subroutine in most other operations. A basic subroutine ...

  3. k-way merge algorithm - Wikipedia

    en.wikipedia.org/wiki/K-way_merge_algorithm

    A tournament tree can be represented as a balanced binary tree by adding sentinels to the input lists (i.e. adding a member to the end of each list with a value of infinity) and by adding null lists (comprising only a sentinel) until the number of lists is a power of two. The balanced tree can be stored in a single array.

  4. Join-based tree algorithms - Wikipedia

    en.wikipedia.org/wiki/Join-based_tree_algorithms

    If the two trees are balanced, join simply creates a new node with left subtree t 1, root k and right subtree t 2. Suppose that t 1 is heavier (this "heavier" depends on the balancing scheme) than t 2 (the other case is symmetric). Join follows the right spine of t 1 until a node c which is balanced with t 2.

  5. Skew heap - Wikipedia

    en.wikipedia.org/wiki/Skew_heap

    Every operation (add, remove_min, merge) on two skew heaps must be done using a special skew heap merge. A skew heap is a self-adjusting form of a leftist heap which attempts to maintain balance by unconditionally swapping all nodes in the merge path when merging two heaps. (The merge operation is also used when adding and removing values.)

  6. Leftist tree - Wikipedia

    en.wikipedia.org/wiki/Leftist_tree

    If we have a pointer to a node x in a Min HBLT, we can delete it as follows: Replace the node x with the result of merging its two subtrees and update the s-values of the nodes on the path from x to the root, swapping the right and left subtrees if necessary to maintain the leftist tree property.

  7. Fibonacci heap - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_heap

    For example, merging heaps is done simply by concatenating the two lists of trees, and operation decrease key sometimes cuts a node from its parent and forms a new tree. However, at some point order needs to be introduced to the heap to achieve the desired running time.

  8. Binary tree - Wikipedia

    en.wikipedia.org/wiki/Binary_tree

    In computing, binary trees can be used in two very different ways: First, as a means of accessing nodes based on some value or label associated with each node. [9] Binary trees labelled this way are used to implement binary search trees and binary heaps, and are used for efficient searching and sorting.

  9. Binary heap - Wikipedia

    en.wikipedia.org/wiki/Binary_heap

    A binary heap is defined as a binary tree with two additional constraints: [3] Shape property: a binary heap is a complete binary tree; that is, all levels of the tree, except possibly the last one (deepest) are fully filled, and, if the last level of the tree is not complete, the nodes of that level are filled from left to right.