enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. CUDA - Wikipedia

    en.wikipedia.org/wiki/CUDA

    The initial CUDA SDK was made public on 15 February 2007, for Microsoft Windows and Linux. Mac OS X support was later added in version 2.0, [17] which supersedes the beta released February 14, 2008. [18] CUDA works with all Nvidia GPUs from the G8x series onwards, including GeForce, Quadro and the Tesla line. CUDA is compatible with most ...

  3. DeepSpeed - Wikipedia

    en.wikipedia.org/wiki/DeepSpeed

    The library is designed to reduce computing power and memory use and to train large distributed models with better parallelism on existing computer hardware. [2] [3] DeepSpeed is optimized for low latency, high throughput training.

  4. PyTorch - Wikipedia

    en.wikipedia.org/wiki/PyTorch

    In September 2022, Meta announced that PyTorch would be governed by the independent PyTorch Foundation, a newly created subsidiary of the Linux Foundation. [ 24 ] PyTorch 2.0 was released on 15 March 2023, introducing TorchDynamo , a Python-level compiler that makes code run up to 2x faster, along with significant improvements in training and ...

  5. Torch (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Torch_(machine_learning)

    Torch is used by the Facebook AI Research Group, [8] IBM, [9] Yandex [10] and the Idiap Research Institute. [11] Torch has been extended for use on Android [12] [better source needed] and iOS. [13] [better source needed] It has been used to build hardware implementations for data flows like those found in neural networks. [14]

  6. Comparison of deep learning software - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_deep...

    C++, Wolfram Language, CUDA: Wolfram Language: Yes No Yes No Yes Yes [75] Yes Yes Yes Yes [76] Yes Software Creator Initial release Software license [a] Open source Platform Written in Interface OpenMP support OpenCL support CUDA support ROCm support [77] Automatic differentiation [2] Has pretrained models Recurrent nets Convolutional nets RBM/DBNs

  7. CuPy - Wikipedia

    en.wikipedia.org/wiki/CuPy

    CuPy is a part of the NumPy ecosystem array libraries [7] and is widely adopted to utilize GPU with Python, [8] especially in high-performance computing environments such as Summit, [9] Perlmutter, [10] EULER, [11] and ABCI.

  8. pip (package manager) - Wikipedia

    en.wikipedia.org/wiki/Pip_(package_manager)

    Pip's command-line interface allows the install of Python software packages by issuing a command: pip install some-package-name. Users can also remove the package by issuing a command: pip uninstall some-package-name. pip has a feature to manage full lists of packages and corresponding version numbers, possible through a "requirements" file. [14]

  9. Horovod (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Horovod_(machine_learning)

    Horovod is a free and open-source software framework for distributed deep learning training using TensorFlow, Keras, PyTorch, and Apache MXNet. Horovod is hosted under the Linux Foundation AI (LF AI). [3] Horovod has the goal of improving the speed, scale, and resource allocation when training a machine learning model. [4]