Search results
Results from the WOW.Com Content Network
Together with double negation elimination one may infer our originally formulated rule, namely that anything follows from an absurdity. Typically the intuitionistic negation of is defined as . Then negation introduction and elimination are just special cases of implication introduction (conditional proof) and elimination (modus ponens).
Double negation elimination and double negation introduction are two valid rules of replacement. They are the inferences that, if not not-A is true, then A is true, and its converse, that, if A is true, then not not-A is true, respectively. The rule allows one to introduce or eliminate a negation from a formal proof.
Excluded middle and double negation elimination can still be proved for some propositions on a case by case basis, however, but do not hold universally as they do with classical logic. The standard explanation of intuitionistic logic is the BHK interpretation. [1] Several systems of semantics for intuitionistic logic have been studied.
Implication introduction / elimination (modus ponens) Biconditional introduction / elimination; Conjunction introduction / elimination; Disjunction introduction / elimination; Disjunctive / hypothetical syllogism; Constructive / destructive dilemma; Absorption / modus tollens / modus ponendo tollens; Negation introduction; Rules of replacement
A negative literal is the negation of an atom (e.g., ). The polarity of a literal is positive or negative depending on whether it is a positive or negative literal. In logics with double negation elimination (where ¬ ¬ x ≡ x {\displaystyle \lnot \lnot x\equiv x} ) the complementary literal or complement of a literal l {\displaystyle l} can ...
Exclusive or, exclusive disjunction, exclusive alternation, logical non-equivalence, or logical inequality is a logical operator whose negation is the logical biconditional. With two inputs, XOR is true if and only if the inputs differ (one is true, one is false).
Classical logic is the standard logic of mathematics. Many mathematical theorems rely on classical rules of inference such as disjunctive syllogism and the double negation elimination. The adjective "classical" in logic is not related to the use of the adjective "classical" in physics, which has another meaning.
move to sidebar hide. From Wikipedia, the free encyclopedia