Search results
Results from the WOW.Com Content Network
Crypto++ (also known as CryptoPP, libcrypto++, and libcryptopp) is a free and open-source C++ class library of cryptographic algorithms and schemes written by Wei Dai.Crypto++ has been widely used in academia, student projects, open-source, and non-commercial projects, as well as businesses. [1]
The reference source code used the unsigned long type rather than the 64-bit clean uint32_t. The reference source code did not use const types. The reference source code omitted redundant parentheses, using C precedence to write the round function as e.g. v1 += (v0<<4 ^ v0>>5) + v0 ^ sum + k[sum>>11 & 3] ;
The authors of Rijndael used to provide a homepage [2] for the algorithm. Care should be taken when implementing AES in software, in particular around side-channel attacks. The algorithm operates on plaintext blocks of 16 bytes. Encryption of shorter blocks is possible only by padding the source bytes, usually with null bytes. This can be ...
crypt is a POSIX C library function. It is typically used to compute the hash of user account passwords. The function outputs a text string which also encodes the salt (usually the first two characters are the salt itself and the rest is the hashed result), and identifies the hash algorithm used (defaulting to the "traditional" one explained below).
Data compression can be achieved by building SEAL with Zlib support. By default, data is compressed using the DEFLATE algorithm which achieves significant memory footprint savings when serializing objects such as encryption parameters, ciphertexts, plaintexts, and all available keys: Public, Secret, Relin (relinearization), and Galois.
In cryptography, the Tiny Encryption Algorithm (TEA) is a block cipher notable for its simplicity of description and implementation, typically a few lines of code.It was designed by David Wheeler and Roger Needham of the Cambridge Computer Laboratory; it was first presented at the Fast Software Encryption workshop in Leuven in 1994, and first published in the proceedings of that workshop.
McEliece consists of three algorithms: a probabilistic key generation algorithm that produces a public and a private key, a probabilistic encryption algorithm, and a deterministic decryption algorithm. All users in a McEliece deployment share a set of common security parameters: ,,.
SipHash computes a 64-bit message authentication code from a variable-length message and 128-bit secret key. It was designed to be efficient even for short inputs, with performance comparable to non-cryptographic hash functions, such as CityHash; [4]: 496 [2] this can be used to prevent denial-of-service attacks against hash tables ("hash flooding"), [5] or to authenticate network packets.