enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Generalized Stokes theorem - Wikipedia

    en.wikipedia.org/wiki/Generalized_Stokes_theorem

    Let M be a smooth manifold. A (smooth) singular k-simplex in M is defined as a smooth map from the standard simplex in R k to M. The group C k (M, Z) of singular k-chains on M is defined to be the free abelian group on the set of singular k-simplices in M. These groups, together with the boundary map, ∂, define a chain complex.

  3. John M. Lee - Wikipedia

    en.wikipedia.org/wiki/John_M._Lee

    Introduction to Smooth Manifolds. Graduate Texts in Mathematics. Vol. 218 (Second ed.). New York London: Springer-Verlag. ISBN 978-1-4419-9981-8. OCLC 808682771. Introduction to Smooth Manifolds, Springer-Verlag, Graduate Texts in Mathematics, 2002, 2nd edition 2012 [6] Fredholm Operators and Einstein Metrics on Conformally Compact Manifolds.

  4. Lee Hwa Chung theorem - Wikipedia

    en.wikipedia.org/wiki/Lee_Hwa_Chung_theorem

    Lee, John M., Introduction to Smooth Manifolds, Springer-Verlag, New York (2003) ISBN 0-387-95495-3.Graduate-level textbook on smooth manifolds. Hwa-Chung, Lee, "The Universal Integral Invariants of Hamiltonian Systems and Application to the Theory of Canonical Transformations", Proceedings of the Royal Society of Edinburgh.

  5. Differential topology - Wikipedia

    en.wikipedia.org/wiki/Differential_topology

    In mathematics, differential topology is the field dealing with the topological properties and smooth properties [a] of smooth manifolds.In this sense differential topology is distinct from the closely related field of differential geometry, which concerns the geometric properties of smooth manifolds, including notions of size, distance, and rigid shape.

  6. Congruence (manifolds) - Wikipedia

    en.wikipedia.org/wiki/Congruence_(manifolds)

    In the theory of smooth manifolds, a congruence is the set of integral curves defined by a nonvanishing vector field defined on the manifold. Congruences are an important concept in general relativity , and are also important in parts of Riemannian geometry .

  7. Flow (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Flow_(mathematics)

    The flows of time-independent and time-dependent vector fields are defined on smooth manifolds exactly as they are defined on the Euclidean space ⁠ ⁠ and their local behavior is the same. However, the global topological structure of a smooth manifold is strongly manifest in what kind of global vector fields it can support, and flows of ...

  8. Symplectic manifold - Wikipedia

    en.wikipedia.org/wiki/Symplectic_manifold

    Symplectic manifolds arise from classical mechanics; in particular, they are a generalization of the phase space of a closed system. [1] In the same way the Hamilton equations allow one to derive the time evolution of a system from a set of differential equations, the symplectic form should allow one to obtain a vector field describing the flow of the system from the differential of a ...

  9. Musical isomorphism - Wikipedia

    en.wikipedia.org/wiki/Musical_isomorphism

    The musical isomorphisms are the global version of this isomorphism and its inverse for the tangent bundle and cotangent bundle of a (pseudo-)Riemannian manifold (,). They are canonical isomorphisms of vector bundles which are at any point p the above isomorphism applied to the tangent space of M at p endowed with the inner product g p ...