Search results
Results from the WOW.Com Content Network
Introduction to Smooth Manifolds. Graduate Texts in Mathematics. Vol. 218 (Second ed.). New York London: Springer-Verlag. ISBN 978-1-4419-9981-8. OCLC 808682771. Introduction to Smooth Manifolds, Springer-Verlag, Graduate Texts in Mathematics, 2002, 2nd edition 2012 [6] Fredholm Operators and Einstein Metrics on Conformally Compact Manifolds.
It is known that for manifolds of dimension 4 and higher, no program exists that can decide whether two manifolds are diffeomorphic. Smooth manifolds have a rich set of invariants, coming from point-set topology, classic algebraic topology, and geometric topology.
A smooth structure on a manifold is a collection of smoothly equivalent smooth atlases. Here, a smooth atlas for a topological manifold is an atlas for such that each transition function is a smooth map, and two smooth atlases for are smoothly equivalent provided their union is again a smooth atlas for .
Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as smooth manifolds with a Riemannian metric (an inner product on the tangent space at each point that varies smoothly from point to point). This gives, in particular, local notions of angle, length of curves, surface area and volume.
In the theory of smooth manifolds, a congruence is the set of integral curves defined by a nonvanishing vector field defined on the manifold. Congruences are an important concept in general relativity , and are also important in parts of Riemannian geometry .
Types of manifolds in engineering include: Exhaust manifold An engine part that collects the exhaust gases from multiple cylinders into one pipe. Also known as headers. Hydraulic manifold A component used to regulate fluid flow in a hydraulic system, thus controlling the transfer of power between actuators and pumps Inlet manifold (or "intake ...
Pages in category "Smooth manifolds" The following 19 pages are in this category, out of 19 total. This list may not reflect recent changes. ...
In mathematics, differential topology is the field dealing with the topological properties and smooth properties [a] of smooth manifolds.In this sense differential topology is distinct from the closely related field of differential geometry, which concerns the geometric properties of smooth manifolds, including notions of size, distance, and rigid shape.