enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. String kernel - Wikipedia

    en.wikipedia.org/wiki/String_kernel

    In machine learning and data mining, a string kernel is a kernel function that operates on strings, i.e. finite sequences of symbols that need not be of the same length.. String kernels can be intuitively understood as functions measuring the similarity of pairs of strings: the more similar two strings a and b are, the higher the value of a string kernel K(a, b) wi

  3. String-searching algorithm - Wikipedia

    en.wikipedia.org/wiki/String-searching_algorithm

    A string-searching algorithm, sometimes called string-matching algorithm, is an algorithm that searches a body of text for portions that match by pattern. A basic example of string searching is when the pattern and the searched text are arrays of elements of an alphabet ( finite set ) Σ.

  4. Bag-of-words model - Wikipedia

    en.wikipedia.org/wiki/Bag-of-words_model

    Additionally, for the specific purpose of classification, supervised alternatives have been developed to account for the class label of a document. [4] Lastly, binary (presence/absence or 1/0) weighting is used in place of frequencies for some problems (e.g., this option is implemented in the WEKA machine learning software system).

  5. Bag-of-words model in computer vision - Wikipedia

    en.wikipedia.org/wiki/Bag-of-words_model_in...

    Computer vision researchers have developed several learning methods to leverage the BoW model for image related tasks, such as object categorization. These methods can roughly be divided into two categories, unsupervised and supervised models. For multiple label categorization problem, the confusion matrix can be used as an evaluation metric.

  6. Feature (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Feature_(machine_learning)

    In pattern recognition and machine learning, a feature vector is an n-dimensional vector of numerical features that represent some object. Many algorithms in machine learning require a numerical representation of objects, since such representations facilitate processing and statistical analysis. When representing images, the feature values ...

  7. Approximate string matching - Wikipedia

    en.wikipedia.org/wiki/Approximate_string_matching

    Both algorithms are based on dynamic programming but solve different problems. Sellers' algorithm searches approximately for a substring in a text while the algorithm of Wagner and Fischer calculates Levenshtein distance, being appropriate for dictionary fuzzy search only. Online searching techniques have been repeatedly improved.

  8. Burrows–Wheeler transform - Wikipedia

    en.wikipedia.org/wiki/Burrows–Wheeler_transform

    The Burrows–Wheeler transform (BWT, also called block-sorting compression) rearranges a character string into runs of similar characters. This is useful for compression, since it tends to be easy to compress a string that has runs of repeated characters by techniques such as move-to-front transform and run-length encoding.

  9. Autoencoder - Wikipedia

    en.wikipedia.org/wiki/Autoencoder

    An autoencoder is a type of artificial neural network used to learn efficient codings of unlabeled data (unsupervised learning).An autoencoder learns two functions: an encoding function that transforms the input data, and a decoding function that recreates the input data from the encoded representation.