Search results
Results from the WOW.Com Content Network
Proximal gradient methods are a generalized form of projection used to solve non-differentiable convex optimization problems. A comparison between the iterates of the projected gradient method (in red) and the Frank-Wolfe method (in green). Many interesting problems can be formulated as convex optimization problems of the form
It is a variant of the biconjugate gradient method (BiCG) and has faster and smoother convergence than the original BiCG as well as other variants such as the conjugate gradient squared method (CGS). It is a Krylov subspace method. Unlike the original BiCG method, it doesn't require multiplication by the transpose of the system matrix.
There, both step direction and length are computed from the gradient as the solution of a linear system of equations, with the coefficient matrix being the exact Hessian matrix (for Newton's method proper) or an estimate thereof (in the quasi-Newton methods, where the observed change in the gradient during the iterations is used to update the ...
The conjugate gradient method with a trivial modification is extendable to solving, given complex-valued matrix A and vector b, the system of linear equations = for the complex-valued vector x, where A is Hermitian (i.e., A' = A) and positive-definite matrix, and the symbol ' denotes the conjugate transpose.
The Barzilai-Borwein method [1] is an iterative gradient descent method for unconstrained optimization using either of two step sizes derived from the linear trend of the most recent two iterates. This method, and modifications, are globally convergent under mild conditions, [ 2 ] [ 3 ] and perform competitively with conjugate gradient methods ...
GPOPS-II (pronounced "GPOPS 2") is a general-purpose MATLAB software for solving continuous optimal control problems using hp-adaptive Gaussian quadrature collocation and sparse nonlinear programming.
This "off-line" property of subgradient methods differs from the "on-line" step-size rules used for descent methods for differentiable functions: Many methods for minimizing differentiable functions satisfy Wolfe's sufficient conditions for convergence, where step-sizes typically depend on the current point and the current search-direction.
In this method, the basic shape function is modified to obtain the upwinding effect. This method is an extension of Runge–Kutta discontinuous for a convection-diffusion equation. For time-dependent equations, a different kind of approach is followed. The finite difference scheme has an equivalent in the finite element method (Galerkin method ...