enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Weak convergence (Hilbert space) - Wikipedia

    en.wikipedia.org/wiki/Weak_convergence_(Hilbert...

    Note that closed and bounded sets are not in general weakly compact in Hilbert spaces (consider the set consisting of an orthonormal basis in an infinite-dimensional Hilbert space which is closed and bounded but not weakly compact since it doesn't contain 0). However, bounded and weakly closed sets are weakly compact so as a consequence every ...

  3. Banach space - Wikipedia

    en.wikipedia.org/wiki/Banach_space

    In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space.Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space.

  4. Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Hilbert_space

    Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space. A Hilbert space is a special case of a Banach space. Hilbert spaces were studied beginning in the first decade of the 20th century by David Hilbert, Erhard Schmidt, and Frigyes Riesz.

  5. Type and cotype of a Banach space - Wikipedia

    en.wikipedia.org/wiki/Type_and_cotype_of_a...

    In functional analysis, the type and cotype of a Banach space are a classification of Banach spaces through probability theory and a measure, how far a Banach space from a Hilbert space is. The starting point is the Pythagorean identity for orthogonal vectors ( e k ) k = 1 n {\displaystyle (e_{k})_{k=1}^{n}} in Hilbert spaces

  6. Decomposition of spectrum (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/Decomposition_of_spectrum...

    For a Banach space, T* denotes the transpose and σ(T*) = σ(T). For a Hilbert space, T* normally denotes the adjoint of an operator T ∈ B(H), not the transpose, and σ(T*) is not σ(T) but rather its image under complex conjugation. For a self-adjoint T ∈ B(H), the Borel functional calculus gives additional ways to break up the spectrum ...

  7. Spaces of test functions and distributions - Wikipedia

    en.wikipedia.org/wiki/Spaces_of_test_functions...

    The space ′ is separable [16] and has the strong Pytkeev property [17] but it is neither a k-space [17] nor a sequential space, [16] which in particular implies that it is not metrizable and also that its topology can not be defined using only sequences.

  8. Weak convergence - Wikipedia

    en.wikipedia.org/wiki/Weak_convergence

    Weak convergence (Hilbert space) of a sequence in a Hilbert space more generally, convergence in weak topology in a Banach space or a topological vector space Topics referred to by the same term

  9. Spectral theory - Wikipedia

    en.wikipedia.org/wiki/Spectral_theory

    This definition applies to a Banach space, but of course other types of space exist as well; for example, topological vector spaces include Banach spaces, but can be more general. [12] [13] On the other hand, Banach spaces include Hilbert spaces, and it is these spaces that find the greatest application and the richest theoretical results. [14]